Genotype X Environment
Interaction in Plant Breeding:
To Avoid It or To Exploit It?

Rong-Cai Yang!?
LAlberta Agriculture and Forestry
University of Alberta

June 24, 2015

_A’(hml WFGA/NWSOMA 2015




What i1s GXE?

e When comparing responses of two
genotypes to environmental gradients, GxE Is
the failure of the two response curves to be
parallel (Baker 1988, Proceedings of ICQG
1987).

e Similar concept in evolution and ecology but often
different terms are used:. phenotypic plasticity
(robustness), reaction norm (e.g., Via 1994)



Big challenge to characterize environments...when there are
so many factors affecting crop production!!
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Designs for studying GxE

e Agricultural crops:

e Inbred lines can be self-pollinated to produce large numbers of
genetically identical progeny

e Same genotypes can be replicated over environments
e Multiple-environment trials (METS)

e Foresttrees
e Not possible to replicate same genotypes over environments

e ‘Replication’ over environments is realized by using relatives from
the same family (e.g., half-sibs)

e Provenance trials or provenance-progeny trials.



Barley cultivar trials across Canadian Prairies:
GxE is an important component of total variability

Alberta Saskatchewan Mamitoba
Year Source dfr % S8 dr %% 88 dr % 88
1995 E 15 77.95
G 38 f.52
G xE 570 553 o GXE > G in most (17/19) cases
1996 E 19 83.29
G . s % e G<10% in most (16/19) cases
GxE Ho0 0.63
1997 E 17 57.49 .
G 38 v * GXEis up to 24%
GxE 623 22.12
1998 E 18 81.14
G 38 8.57
GxE H84 10.29
1999 E 19 85.12 14 H7.44 14 835.89
G 38 5.73 35 12.92 33 5.10
GxE H56 9.14 490 19.64 238 9.00
2000 E 21 71.45 22 (606 12 8449
G 38 4.68 39 18.66 28 495
GxE 750 23.87 858 15.27 132 10.56
2001 E 19 79.71 19 7509 11 8296
G 34 7.61 37 12.88 19 8.44
GxE 553 12.68 627 12.03 121 260
2002 E 15 f8.54 13 87.91 14 84.64
G 41 9.97 37 5.59 23 5.58
GxE 458 21.49 412 .49 211 9.78
2003 E 18 2969 12 95.63 14 82.70
G 40 3.71 21 080 17 5.25
GxE 569 .60 221 3.57 162 12.05

From Yang et al. (2006)



GXE: a challenge or an opportunity?

e Avoid it: GXE has a large unpredictable component
(e.g., due to year-to-year weather fluctuations). Select
for lines which are more stable over all environments to
mitigate GXE effects

e Exploitit: GXE has a large predictable component
(cultural practices/adaphic/climatic patterns). For
example, select for genotypes that are highly responsive
to cultural practices (e.g., to crop inputs such as
fertilizers)



Make use of multiple-environment trials (METS)
to help breeders to cope with GxE

e GXE interaction in MET can be decomposed into
contributions for locations, years, and location x year
Interactions,

V(GXE) = V(GxL) + V(GxY) + V(GXLXY)

e The ratio, V(GxL)/ V(GXE), Is the relative contribution to
the GXE variance by predictable environmental factors
If the ratio is small, then avoid GXE - breeding for stability
If the ratio is large, then exploit GXE - breeding for location

From Walsh & Lynch Vol. 2
( )


http://nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html%232B

|ldentifying unpredictable GXxE:
Crossover GxE (COl)

Linear response

AWAN

Enviroment Enviroment Enviroment

No GxE GXxE: Non-COI| GxE: COIl




COI GXxE Is ubiquitous, but present only with the
presence of varying environmental conditions

e Select 10 best and 10 worst
Comparative assessment of genetic variation of families at Norris site, but COI

young high-elevation lodgepole pine for height occurred when looking at both
and western gall rust resistance across two sites

sites in Alberta CJFR 28:478-484 (1996) e GXE for stress-related traits

Rong-Cai Yang, Narinder K. Dhir, and Leonard K. Barnhardt (eg, WG R) can be assessed

only in the presence of stress
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Modified Azzalini—Cox test for COIl GxE

Mixed-Model Analysis of Crossover e

Genotype—Environment Interactions
Crop Sci 47:1051-1062 (2007)
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g(g-1)e(e-1)/4 possible
qguadruples [e.g., 2,295
guadruples for 6 genotypes
and 18 environments]

Interaction-wise error rate
(a/2)%-5 = 0.158 rather than
comparison-wise (a = 0.05)
or even more conservative
experiment-wise (the original
Azzalini-Cox test) error rate

The test for COI is more
conservative in mixed and
random models than in fixed
model due to shrinkage of
random GXxE effects

The original Azzalini—Cox test gives experiment-wise error rate protection against rejecting a true null
hypothesis (lower Type | error rate) at a cost of high Type Il error rate (i.e., low power to detect the true
COl). However, a Type | error may not be serious because follow-up cultivar trials will reveal spurious COl,
but a Type Il error is serious because a potentially important COl may go undetected.



Dealing with unpredictable GxE:
stability analysis

e Linear approach: classical stability analysis

e Linear-bilinear approach: Seeking structured patterns in
GxE

e Nonlinear approach: Capturing more GxE variation



Classical stability analysis pioneered
by Yates & Cochran (1938)

e Create a single environmental index as a
surrogate to represent all of the complex and
unobservable characteristics of the environment

e Carry out a simple linear regression analysis:
Yi =& +0;X

where y; Is the performance (yield) of the ith
genotype tested in jth environment; x; Is the
mean yield of all genotypes tested in the jth
environment (environmental index)



Interpreting classical stability analysis in plant
breeding context (e.g., Finlay & Wilkinson 1963,
Eberhart & Russell 1966; Perkins &Jinks 1968)

Stability of a genotype= Yii =& + bi X;
regression coefficient : 1
e Ave stability (b=1)

e Low stability (b>1):
sensitive to
environmental
changes

e High stability (b<1):
Insensitive to
environmental

changes —
Poor |

b=10

b=04

Good

Environme%t



Isovield Analysis of Barley Cultivar Trials in the Canadian Prairies :
Isoyield groups not matched

R.-C. Yang, D. Stanton, S. F. Blade, J. Helm, D. Spaner, S. Wright, and D. Domitruk with soil zones and geography
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Linear-bilinear approach: seeking for
stability patterns

e Based on singular value decomposition
(SVD) or two-way PCA

e Different models depending on which of 3
terms (G, E and GxE) SVD is applied
o AMMI = GXE
o SREG (GGE) > G + GxE
o GREG = E + GxE
e SHMM - G + E + GXE

See Yang et al. (2009, Crop Sci. 49:1564-1576) for review and critiques



GXE two-way table from 35 soybean trials

(Zobel et al. 1988, Agron. J. 80:388-93)

enotype
Environment EVANT WILK CHIP HODG S200 CORS WELL Mean
S — S h.s h.l-l S —

ATT 757 E503 2361 2771 2BTB 3141 2777 2741
CT7 it E 1 iy | 1755 21432 1089 1836 1217 1972
vIT 1567 1103 2266 2468 2730 2569 2616 2188
VTR 1736 1493 1606 2172 anil 2145 1653 1802
ATS 3127 2623 248K 3201 3430 28TR 2741 2034
79 2717 2562 1728 1944 1848 14R6 1264 1944
GTS 2986 2367 2340 3154 2623 3040 2455 2709
BT 1843 111¢ 1816 2485 2106 1769 58 1885
Lk 1083 LY L 1278 1500 1964 1661 1715 1387
ARG 2919 2784 2ERE A20R 2708 alon 2219 2TRE
CBO 06 3248 2280 2710 2172 2360 1432 23A5
GRO 3901 a194 3376 4006 3887 4250 anlT aT46
L&0 2706 3820 2093 3732 aTaa 3161 3215 3481
D 1937 1580 1580 2374 1997 2609 1850 1995
RED 2199 1870 2199 2066 2461 2327 216G 2315
WA 2334 2018 1802 1964 1601 2165 1762 1962
ARl 033 2609 2636 013 2831 3611 2050 2056
C&1 053 3053 1549 2522 1654 2156 1708 2289
GE1 aazz 892 3208 3840 3383 4028 azis 415
L#1 2972 2710 2636 29TE ot 2818 2777 2779
D&l 2520 19407 2582 3268 2112 2520 2320 2477
R&1 2038 1386 2347 2798 2618 2066 2757 2415
Vel 3026 a1z7 23RT 2367 2361 2461 2260 2570
ARZ 2186 1870 1383 2441 2441 2662 2250 22332
LAz 2663 1957 2545 2798 az4l 3147 2737 2725
a2 652 3295 2724 aTi2 3501 a2 4322 a50d
VE2 2873 1910 1123 1765 1184 1399 1845 1570
ARS 2582 225 2018 2313 2162 2068 1970 2180
183 1278 1026 1688 1701 2105 1864 1856 1660
Gas 4489 4015 3329 AG20 3564 4062 3625 BG54
AB4 3161 2717 aLea 3860 a3Te 3423 3544 3324
N84 2993 BE0D 26 a2zl 3369 azol 2703 2060
CR4 4181 paits ] Z44E 0G0 2576 2784 267D 2773
184 1950 1701 278 2260 2145 2246 1917 2042
G54 40105 329 3829 3961 4277 4015 3682 3803

Mesn 209 2361 2313 2H41 2604 2737 2409 pailil]

-35 environments
-7 genotypes
-245 GxE terms



Problems with Linear regression analysis of GXE

Table 4. Finlay-Wilkinson regression analysis for soybean yields.

Zobel et al. 1988

Source df Sum of squares  Mean aguare F
=1 n
x 10 (Agron. J. 80:388-93)
Trials 244 135 991 574 5.19%ee
Genotype B £ 902 1498 13,5594
Environment 44 105 558 3 10& 2R 7=
GE Intgraction 204 25 442 125 1.13 NS
Joint Regr. 1 487 487 4. 40
(zen. Hagrs. G 133 27 0,24 NS
Env. Regra. a3 1 394 42 0,38 NS
Residual 165 23 427 142 1.28%
Error BET T4 778 111
Tatal a11 213 Tab 235

—m

#aer = P < 0,05 and 0.001, respectively,

* Regression SS explains only 7.9% of the total
GXxE variation, but with 19% df
e (487+133+1394)/25442 =0.079
e (1+5+33)/204 =0.19

So the linear regression model is parsimonious, but not effective in
capturing the total GXE variation



AMMI model for GxE

Table 5. AMMI analysie of variance for soybean yields,

Source i Sum of smsares Mown avere 7 Zobel et al. 1988

—

x 10 (Agron. J. 80:388-93)

Trials 244 139 991 a74 5.19%==

Genotype L B 992 1499 13.55%""

Environment 34 105 558 3 10& ZR.OTwew

GE Intermction 204 25 442 135 1.13 N5

PCA 1 49 18 075 463 4, ]9%==

Residual 165 T 367 45 0.41 NS
Error GET 73 775 111
Total 811 213 Tog 235

e = P o« 0.0001,

« AMMI SS explains ~70% of the total GXE
variation, but with only 19% df
e 18075/25442 =0.68
e 39/204 =0.19

So the AMMI model is both parsimonious and effective in capturing the
total GXE variation



Graphical interpretation of GXE under AMMI model
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Nonlinear approach: Capturing more GxE variation

e Some well known nonlinear functions

e Quadratic (parabola) function to model (i) yield response to field
water availability (McKenzie et al. 2004), and (ii) response to
climate (Rehfeldt et al. 1999)

e Cauchy function to model (i) yield response to planting density
(Baker 1988), and (ii) response to geographical gradient
(Raymond and Lindgren 1990; Lindgren and Ying 2000)

e Logistic function to model the relationship of plant growth with
age (West et al. 2001)

e Normal (Gaussian) function to model response to environmental
gradient (Roberds and Namkoong 1989).
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Analysis of linear and non-linear genotype x environment
Interaction

Rong-Cai Yang'2*

e Responses near the
optimum are
iIndistinguishably similar

e Differ only when
environment is not good
(suboptimal) or too
good (super-optimal)

e Efficiency (suboptimal)

vs. tolerance (super- .
(0) ptl m al) Suboptimal Optimal Super-optimal

Modified from Lindgren and Ying (2000)



Linear vs. nonlinear functions

e Linear model can’t
tell difference
between
suboptimal and
super-optimal

e Linear fit to a
nonlinear function
would ‘force’ a
reduction In
environmental
variation (range)

[ | | I |

sub-optimal optimal  super-optimal bad good



Distribution of barley variety testing sites across

the Canadian prairies (1995-2003)
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2002 Barley variety trials in Alberta:
42 varieties tested at each of 16 sites
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% of total GXE variation for barley cultivar trials in Alberta
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Cauchy function captures more GxE variation than other functions



Genome-wide prediction of environment-
specific marker effects

e A huge and complex literature on genome-wide prediction and its
application to animal/plant breeding, but all traced back Meuwissen
et al (2001) landmark paper

e Key idea: finding weights for all markers when number of markers
>> number of scored (phenotyped) individuals (“p >> n”).

e A lot of different approaches to do this including rrBLUP, LASSO,
BayesA/B, ..., but all involve in some kind of strategies to shrink
marker effects towards zero

Cogrighn & 2001 by the Cenenics Sodery of Amenica

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,” B. |. Haves™ and M. E. Goddard™

* Research Instifule of Animal Scence and Health, 8200 AR Lelystad, The Netherlands, TVidorian Isiitule of Animal Science.
Attoood 3049, Vicloria, Ausiralia and Unsiifule of Land and Food Resources,
Unigersify of Meibowrne, Parkoille 3052, Videnia, Ausfralic
Manuscrips received August 17, 2000
Accepied for publication January 17, 2001
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Analysis of linear and non-linear genotype x environment
Interaction
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An example of genomic approach
e A publicly available data set: 150 DH (doubled-haploid)

lines developed from a cross between two malting barley
varieties (Steptoe X Morex) for the North American
Barley Genome Mapping Project (NABGMP)

( )-

e DH lines were tested in 16 environments over N America
for yield and 7 other agronomic and malt quality traits.

e 223 RFLP makers mapped over the genome: 37, 37,
31, 33, 29, 22 and 34 makers were mapped on seven
chromosomes.


http://wheat.pw.usda.gov/

Linear response of 150 barley DH
lines to environmental index

10

e Responses are
more or less
linear

e Variation is
greater in ‘good’
environments <
than in ‘poor’
environments.

Yield (Mg/ha)
6
|




How to shrink marker/QTL effects?
Shrinkage is needed as p (223) > n (150) in our case

We used the general regularized regression of Friedman et al. [J
Stat Softw. 2010 ; 33(1): 1-22] with the elastic-net penalty (P,) as a
compromise between rrBLUP penalty (a = 0) and LASSO (Least
Absolute Shrinkage and Selection Operator) penalty (a = 1)

rrBLUP is known to shrink marker effects towards each other,
allowing them to borrow strength from each other. In the extreme
case of p markers ‘shared’ with a single QTL, each marker gets
identical weights with 1/pth the size of the QTL effect.

rrBLUP penalty is ideal for Fisher’s infinitesimal model (small but equal genic
effects => a Gaussian prior in Bayesian analysis)

LASSO is insensitive to highly correlated markers, and it tends to
pick one and ignores the rest. In the extreme case above, the lasso
problem breaks down.

LASSO penalty corresponds to a Laplace prior, which expects many coefficients
to be close to zero, and a small subset to be larger and nonzero.

Implemented in a software, GLMNET/R



Genome-wide estimation of marker/QTL effects: Barley
yields in good, average and poor environments

rrBLUP (a = 0) Elastic net (a=.5) LASSO (a=1)
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Epistatic effects vary o o
. Stability of genome-wide QTL effects on malt z-amylase
over environmen tS activity in a barley doubled-haploid population

R.-C. Yang - B. J. Ham

Bozeman, MT [W) 1291

Pullman, WaA 1982

—
[&]
T 10 £
& Q
135 = 0.80
g 020 g 0.45
[ =%
=1 045 (T )
1] o0 22
223
23

223(223-1)/2 = 24,753 pairs of loci for epistatic effects estimated
using EBAYES of Xu (2007) in each of nine environments



Geostatistical approach to GxE

o Make use of location information on individuals to partition the
total GXE variability into components due to spatial pattern and
residual

e Semivariogram [y(h)] =half average of all squared differences
between pairs of yield readings at a distance, h, apart.

1 N (h) B 2
() = o e | 2(u)-2(u)) |

Z (uy)
z(ul)OA ® dZ(ug) ®
Z(u) W= g7 (u)




Variogram analysis

Determine dependence of GXE variation on geographic distance

Three commonly used models

% for spatial variability:
g" » Exponential

z » Gaussian

= » Spherical

3

Distance

A similar analysis for determining dependence of GxE variation
on difference between climatic or ecological attributes?!!




Practical Implications of GXE:
Performance vs. stability (sensitivity)?

e Performance and stability are both important but for
different reasons

Increased stability or reduced sensitivity is an important breeding
goal in subsistence agriculture because farmers and their
families simply cannot afford even a single bad year

Improved genotypic stability in forest trees will help mitigate
adverse impacts of changing, unpredictable climates in the future

Conversely, increased sensitivity is needed for breeding for high-
performing genotypes in advanced agronomic management
regimes (e.g., “Barley 180" or “Wheat 150” projects in western
Canada).



Take-home messages

e A huge and complex literature on GxE, but the
majority has little to do with breeding for
predictable and unpredictable environments

e GXE Is often ‘avoided’ by identifying or
developing stable genotypes across all
environments, but their performance may be
compromised at specific environments

e With the advent of genomics and geomatics
technologies, it is now possible to exploit GXE by
identifying the ‘right’ genotypes for ‘right’
environments for maximizing performance



Thank you!
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