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ABSTRACT. We are assessing the potential for current and alternative policies in the Oregon Coast
Range to affect habitat capability for a suite of forest resources. We provide an example of a spatially
explicit habitat capability model for northern spotted owls (Strix occidentalis caurina) to illustrate the
approach we are taking to assess potential changes in habitat capability for vertebrates across the
Coast Range. The model was based on vegetation structure at five spatial scales: the potential nest
tree, a 0.5 ha potential nest patch, 28 ha around a potential nest patch, 212 ha around a potential
nest patch, and a 1,810 ha home range area around a potential nest patch. Sensitivity analyses
indicated that the proportion of the 28 ha patch in large trees around a potential nest patch, and the
number of potential nest trees per ha in the nest patch, had the greatest influence on habitat capability
estimates. The model was verified using georeferenced locations of spotted owl nests from
systematically surveyed areas. Logistic regression analysis indicated that habitat capability scores
were significantly associated with the probability of a site having a nest. Alternative model structures
were tested during verification to test assumptions associated with four variables. The final model
allowed development of a map of habitat capability for spotted owl nesting. The model will be linked
to a model of forest dynamics to project changes in habitat capability under alternative land
management policies. For. Sci. 48(2):203-216.
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HE DEVELOPMENT OF NEW FOREST POLICIES t0 meet bio-
logical diversity goals while providing for other
social and economic values of forestlandsisamajor
challenge for policymakers and managers (Wiersum 1995).
In the Pacific Northwest, conflicts over attaining ecological,
economic, and social goals for forests during the late 1980s
and early 1990s paralyzed forest management on federal
lands and led to considerabl e uncertainty in management of

private lands (FEMAT 1993, p. 1-3). These controversies
resulted in new forest polices in the region for federal and
statelandsand modified forest policesfor privateforestlands
(FEMAT 1993, p. 1-3, Spieset al. 2002). In Oregon’ s Coast
Range, separate policiesfor federal, state, and private lands
were initiated in the 1990s. The President’s Forest Plan
(FEMAT 1993, p. 1-2) brought dramatic changesto federal
forestland management, reducing timber sales from federal
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lands by almost 90% compared to the 1980s. New plans for
state forests are based on structure-based management that
explicitly considers wildlife habitat and forest health while
managing for timber production (McAllister et a. 1999).
State Forest Practices policies apply to private lands and are
designed to protect some aspects of wildlife habitat.

In response to the controversies about sustainability of
forest resources, scientists have become more involved in
forest planning and management with the expectation that a
strong scientific basis will improve our ability to sustain
multiple forest values (Spies et al. 2002). Assessments such
as FEMAT (1993, p. 1-1) brought scientists into the policy
arena. However, these past assessments were limited be-
cause: (1) they were restricted to federal lands; (2) they did
not have the capacity to spatially project landscape changes
under the policy alternatives; and (3) they had little opportu-
nity to examine issues that lay outside the current policy
crisis. In an attempt to address these limitations, we are
developing a mechanism for understanding the potential
implications of policy change on a suite of forest values,
including habitat availability for selected wildlife species
found in the Oregon Coast Range (Spies et a. 2002). We
provide an exampl e of atheoretical model building approach
to estimate the capability of the Oregon Coast Range to
provide nesting habitat for northern spotted owls.

Estimating Habitat Capability

Many studies have characterized habitat availability for
species based on predefined land cover types that represent
vegetation composition and/or seral stages (Ripple et a.
1991, 1997; Block et al. 1994; Karl et al. 2000; O’ Nell et al.
2001). Although useful for large-scal e assessments on static
landscapes (Csuti 1996), the approach assumes that certain
fine-scale features of vegetation (tree sizes, species, dead
wood) and the physical environment (e.g., soils, moisture,
talus) are represented within each class. Further, this ap-
proach does not provide the ability to portray dynamic
landscapes (Flather et al. 1997).

Empirical models based on linear and logistic regression
analysis (Morrison et al. 1987, Pausas et al. 1995), discrimi-
nant analysis (Livingston et al. 1990), and classification and
regressiontreeanalysis (O’ Connor et al. 1996, Dettmersand
Bart 1999) have also been used to identify potential habitat.
Empirical models can be constrained when considering con-
ditionsthat are beyond the bounds of the datathat were used
to develop the relationships. Habitat relationships data that
spanarangeof spatial scalesand vegetativeconditionswould
be needed to devel op entirely empirical habitat relationships
models, but thesedataare generally unavailable, evenfor the
most well-studied species. Despite the lack of adequate
information to build empirical modelsthat would be respon-
sive to novel land management approaches, managers often
are required to ensure that habitat is available over the
foreseeable future for federally or state threatened or endan-
gered species. Estimates of habitat availability and popula-
tion viability are often sought by policy makersand planners
(Thomaset al. 1990, FEMAT 1993, p. 11-13) or required by
law (USDI 1990) when considering policy aternatives.
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A theoretical model structureismoreflexiblethanempiri-
cal models, caninclude conditionsthat might be represented
in future conditions, and provides the opportunity to link
structural characteristics of habitat with output from models
of vegetation dynamics (Pausas et al. 1997, Hansen et al.
1999, Curnuitt et al. 2000, Roloff et al. 2001). The results of
this process allow managers and planners the opportunity to
assess habitat areaand pattern over spaceand time (Pausas et
al. 1997).

Habitat Suitability Index (HSI) model sweredevel oped to
facilitate the consideration of wildlife in multidisciplinary
natural resourceassessments(Schamberger and O’ Neil 1986).
Roloff and Kernohan (1999) found that most HSI models
were deficient in consideration of input parameter variabil-
ity, application of the modelsto inappropriate spatial scales,
and verification on anarrow range of HS| values. Roloff and
Kernohan (1999) offered criteriafor improving the utility of
HSI models and evaluating the model verification process
using the aforementioned criteria. This processresultsin an
index of model quality that ranges from O to 7, with 7 being
optimal model verification. Themaximum score achieved by
studies evaluated by Roloff and Kernohan (1999) was 4.05,
indicating the potential for significant improvementsin de-
velopment and testing of these types of models.

Inconsistenciesinempirical relationshipsbetween animal
occurrence or abundance and habitat conditions are quite
common. Any model structure could be altered in a number
of ways to reflect the uncertainty associated with these
inconsistencies. Alternative model structures that reflect
these uncertainties can be tested as alternative hypotheses
against the original model design (Burnham and Anderson
1998:65). Selection of the best model from among the alter-
natives is based on the data available to test the models.
Although no model structure will be optimum, this process
does allow improvements to model structure based on inde-
pendent data.

Habitat Selection by Northern
Spotted Owils

Nesting habitat for northern spotted owls includes the
presence of nesting structures within nest patches and an
adequate area surrounding the nest patch to provideforaging
sites, roost sites, and protection from predators (Forsman et
al. 1984, p. 30, USDI 1992, p. 19). Platform and cavity nest
treesaveraged 75 and 91 cm diameter at breast height (dbh),
respectively, in California(LaHayeet a. 1997), 106 and 135
cm in Oregon (Forsman et al. 1984:32), and 89 and 142 cm
in Washington (Forsman and Geise 1997). Hershey et a.
(1998) identified three factors associated with spotted owl
nest patchesaround nest trees: number of trees 10—25cm dbh/
ha, number of trees 25-50 cm dbh/ha, and canopy heteroge-
neity. Finally, prey abundanceand availability may influence
nest site selection or nest success. Spotted owl prey often are
associated with elements of conifer foreststypically foundin
old stands (Rosenberg and Anthony 1992, Carey et al. 1992,
1999, p. 41). Northern spotted owl nests tend to be centered
in clumps of old forest (e.g., suitable foraging or roosting
habitat) more often than expected by chance with the area of



old forest decreasing as distance from the nest increases
(Ripple et a. 1991, 1997, Lehmkuhl and Raphael 1993,
Meyer et al. 1998, p. 26, Swindle et al. 1999).

Methods

We used a theoretical modeling approach that included
use of both existing literature and empirical relationships.
This alowed us to link models to vegetation dynamics
models to estimate change in habitat capability resulting
from changesin land management policies. Wedifferentiate
our approach from traditional HSI modeling by including
spatially explicit assessments of nesting and foraging condi-
tions using moving windowsto assessregionsof alandscape
capable of meeting reproduction and foraging requirements
over biologically meaningful scales. The size of the moving
windows represented various spatial scales related to the
specific resourcesthat each speciesrequiresfor survival and
reproduction, the characteristics of patches in which the
resourcesoccur, thedistribution of resource patchesthrough-
out potential home ranges, and the geographic range of the
speciesthat occursin the area of assessment (Johnson 1980,
McComb 2001).

The modelswere devel oped and tested based on informa-
tion from the Oregon Coast Range. The area was chosen
because of itscompl ex land ownership pattern and associated
policiesthat interact to produce acomplex landscape mosaic
(Spieset a. 2002). Further, past management practices have
led to listing of the northern spotted ow! and other speciesas
threatened under the Endangered Species Act (USDI 1990),
and the draft recovery plan for the species relied heavily on
increasing habitat areaand connectivity throughout itsrange
(USDI 1992, p. 100-103).

Vegetation Data

In order to devel op habitat capability modelsrepresenting
arange of spatial scales, we needed estimates of vegetation
compositionand structurethat ranged in detail from nest sites
to homeranges over the Coast Range. We based our analysis
on a vegetation map derived from information integrated
from regional grids of ground-based vegetation sampling (n
= 629 plots), mapped environmental data, and 1988 L andsat
Thematic Mapper imagery usingtheGradient Nearest Neigh-
bor method (Ohmann and Gregory, in press). The approach
appliesdirect gradient analysisand nearest neighbor imputa-
tion to ascribe detailed ground attributes (e.g., tree species
and size) of vegetation to each 25 x 25 m pixel in a digital
landscape of the Oregon Coast Range (Figure 1). Mapped
predictions maintain the covariance structure among mul-
tiple response variables, represent the range of variability in
the plot data, and portray spatial heterogeneity in an ecologi-
cally realistic way. Model performance was excellent at the
regional scale(Ohmann and Gregory, in press), and resultsof
habitat mapping based on these data should reasonably re-
flect regional patternsin habitat for the northern spotted owl.
We do not know how well this approach might be useful for
characterizing habitat elements such as soils or dead wood
availability that might be important to other species. At the
stand level, prediction accuracy varied from good to poor

depending on the vegetation attribute under consideration
(Ohmann and Gregory, in press). Habitat capability maps
derived from these vegetation maps are appropriately used
for regional-level planning and policy analysis, but would not
be suitable for guiding local management decisions.

Habitat Modeling
Wedevel oped amodeling approach that would allow usto
perform the following functions:

1. Quantify capability of sites across the Oregon Coast
Range to provide habitat for northern spotted owlsin the
present landscape.

2. Provide spatially explicit estimates of habitat capability
for northern spotted owls required for mapping habitat
distribution acrosscurrent and possiblefuturel andscapes.
L andscape-scale habitat capability information is a pre-
reguisiteto understanding the effects of |and management
on animal survival, reproduction, and dispersal among
metapopul ations (Lindenmayer et al. 2000).

3. Assessthe effects of alternative land policy scenarios on
habitat pattern and areausi nglandscape-scal e estimatesof
habitat capability.

The method was designed to be adaptable to goals,
constraints, and future conditions not currently repre-
sented on landscapes but that might result from new
approaches imposed by land managers. Further, it allows
comparisons among future forest landscape patterns to
estimateif any arelikely to produce better conditionsthan
others for spotted owls.

Model s represented multiple spatial scales, empirical re-
lationships were considered, and if empirical relationships
were not available, then the literature and expert opinion
were used to refine the model structure. We a'so conducted
both sensitivity analyses and verification using known loca-
tions to test alternative model structures.

Each model predictsaHabitat Capability Index (HCI) that
includes a set of Capability Indices (Cl) associated with the
capability of alandscape patch and its surrounding neighbor-
hood to provide conditions important to survival and repro-
duction. Capability Indices are scaled from 0 to 1, where O
indicates that conditions are not suitable to satisfy one or
more requirements and 1 represents theoretical optimum
conditions. The value for a Cl at a given location was
calculated based on estimates of vegetation and physical
conditions over a range of scales on the landscape. The
selection of vegetation and physical variables to include in
the HCI models depended on four factors. First, we used
variables for which the relationship to reproduction or sur-
vival could be supported by empirical evidence. Second,
variables were necessarily restricted to those that could be
estimated from existing Gl Slayers, including the vegetation
datalayer that wasbased on satelliteimagery, environmental
data, and field data (Ohmann and Gregory, in press). Third,
we selected variables that could be projected into the future
using models of forest dynamics (Spieset al. 2002). Finally,
weonly retained variablesthat had anoticeableinfluence on
HCI values as aresult of sensitivity analysis.
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Figure 1. Vegetation patterns in the Oregon Coast Range based on the Gradient Nearest Neighbor
method (Ohmann and Gregory, in press), used as a basis for estimating habitat capability index
classifications and spotted owl survey areas in which model accuracy was assessed. Sapling/pole
patches were defined as forested pixels with <1.56 m?/ha of basal area or =1.5 m?/ha of basal area and
with dominant and codominant trees having a quadratic mean diameter (QMD) <25 ¢cm. Small/
medium tree patches were defined as forested pixels with =1.5 m?/ha of basal area with dominant and
codominanttrees having a QMD between 25-50 cm. Large tree patches were defined as forested pixels

with =1.5 m?/ha of basal area with dominant and codominant trees having a QMD>50 cm dbh.

An assumption underlying the modeling approach is that
the optimum value of a measured variable for satisfying
survival or reproduction requirementsisknown. The specifi-
cation of an optimum value for any measured variable is
complicated by conflicting definitions of “optimum” and
lack of empirical datato support such a specification (Van
Horne1991). Becausewewill usethemodel only to compare
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among landscapes relative to one another (rather than to
determine the absolute distance from the optimum habitat
condition), we assumed that acomparison of habitat capabil-
ity among alternative land management policies would be
robust in spite of errorsin assigning an optimum value to a
measured variable. Optimum values of measured variables
were estimated by examining the range of variation among



observations made in relatively unmanaged Oregon Coast
Range forests (Landres et a. 1999) and selecting the mean
(for normally distributed data) or median (for nonnormal
data) for the variable estimated in the vegetation types used
by the species.

We assumed that habitat selection by species such as
spotted owls occurs at different scales extending from a
central place (Rosenberg and McKelvey 1999). For our
HCI models, each 25 x 25 m pixel was evaluated relative
to its potential to provide a nest site during the breeding
season, based ontheestimatesof fine-scalefeatureswithin
the focal pixel and conditions around it. To evaluate
potential nesting sites and nesting patches (a 9 pixel
window of 0.56 ha surrounding the focal pixel), variables
were selected that described the density of potential nest
trees within the focal pixel and factors that have been
shown to discriminate owl nest patches from available
habitat (Hershey et al. 1998).

Each focal pixel was further evaluated relative to the
conditionsin the broader landscape surrounding it. We mea-
sured the availability of habitat components needed for
reproduction in a focal pixel (i.e., the pixel to which the
habitat capability scoreis applied) and measured conditions
inan“analytical window” centered onthefocal pixel. Habitat
that could be used for foraging, roosting, and/or cover was
assessed within three radii (0.3, 0.8, and 2.4 km) from the
focal pixel based on past research (Meyer et al. 1998:18,
Swindle et al. 1999). The vegetation structure and composi-
tion of pixels in the patches around each foca pixel was
eval uated and influenced the capability score assigned to the
focal pixel. This process was repeated for all pixels in the
landscape.

The model incorporated commentsto the degree possible
from experts on spotted owl biology and habitat modeling:
Robert G. Anthony, Larry Irwin, Craig Loehle, William
Ripple, and Gary Roloff. Thesearereflected inthefollowing
parameters and functions.

Habitat Capability | ndex

The HCI attributes greater weight to nesting conditions
associated with a potential nest site than to conditionsin
the landscape surrounding the nest site. We assumed that
without conditions for nesting, reproduction would be
unlikely and that populations could not persist. We at-
tempted to account for desirable landscape conditions,
which areassumed to provide adequate conditionsfor prey
and other survival needs, based on landscape attributes
associated with spotted owl nest sites (Meyer et al. 1998,
p. 3941, Swindle et al. 1999).

HCI; =3NCI? % LCl (1)

where

HCI = habitat capability index

f = thefocal pixel

NCI = nest stand capability index [Equation (2)]
LCl = landscape capability index [Equation (3)]

Nest Stand Capability Index.—NCI wascalculated for a
focal pixel at the center of a3 x 3 “moving window.” This
moving window of pixelsaveragesconditionsfor the0.56 ha
surrounding and including the “focal” pixel (i.e, 3 x 3
pixels). Averagingisdoneto: (1) smoothinterpixel variation;
(2) reduce effects of georeferencing and model error in
validation analysis; and (3) providea*“ patch” level summary
consistent with the scal e of the stand inventory datacollected
to describe vegetation in previous studies (Hershey et al.
1998, Ohmann and Gregory, in press).

The subcomponents of NCI are assumed to be largely
compensatory [the numerator is additive; Equation (2)],
although the density of trees>75 cm dbh, is given additional
weight in this equation (i.e., by being squared) becauseit is
asurrogatefor nest treeavailability. Thus, if no nest treesare
available, then nesting is not as likely to occur.

§D1+ D2 + D32 + D4

4
NCIf - 1=1 (2)
9
where
NCI = nesting capability index
f = focal pixel

[ = pixe

D1 = index to density of trees 10-25 cm dbh (Figure 2a)
D2 = index to density of trees 25-50 cm dbh (Figure 2b)
D3 = index to density of trees > 75 cm dbh (Figure 2c)

@)
=
I

diameter diversity index (Figure 2d, Appendix 1)

Diameter Class Density Indices Hershey et al. (1998)
found tree densities for the D1 and D2 size classes aided in
differentiating spotted owl nest stands from other mature to
old-growth stands. The functions relating tree densities to
habitat suitability are based on the upper 95% CI values
reported by Hershey et al. (1998) as representing optimal
conditions (Figure 2a and 2b).

The function relating habitat suitability to density of
trees >75 cm dbh was based on data from unmanaged
Douglas-fir standsin theregion (Figure 2c). We assumed
that unmanaged stands would more likely fall within the
range of natural variability for acceptable conditions
(Landres et al. 1999) than managed stands, and that many
of the features selected by spotted owls more frequently
occur in old stands (Forsman et al. 1984, p. 31-32).
Densities of 47 trees/ha >75 cm dbh represent the lower
95% confidencelimit for an 80-yr-old stand, and 58 and 65
trees/ha represent the mean and upper 95% confidence
limit, respectively, for >75 cm dbh trees in a>200-yr-old
stand (T.A. Spies, unpublished data).

Diameter Diversity Index Spotted owl nest stands often
have a high level of canopy heterogeneity (Hershey et a.
1998). We used adiameter diversity index (DDI) asanindex
to canopy heterogeneity (Figure 2d; Appendix 1). We based
the relationship between habitat suitability and DDI on esti-
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Figure 2. Habitat capability functions for each of the subindices used in the Habitat Capability Model and alternative model structures
for northern spotted owls in the Oregon Coast Range. Figures represent the index to density of trees 10-25 cm dbh (a); index to density
of trees 25-50 cm dbh (b); the index to density of trees >75 cm dbh and alternative models 3 and 4, which suggest habitat capability
increases more rapidly or more slowly, respectively, with more trees >75 cm dbh (c); the diameter diversity index (d); a habitat index
for 28 ha surrounding the focal pixel and its alternative (model 2), that habitat capability increases more rapidly with increasing area of
large tree stands within 28 ha (e); anindex for potential nest trees (density of trees dbh >75 cm) and alternative models 5 and 6, suggesting
a potential nest tree index is best represented by the density of trees dbh >50 cm or >100 cm, respectively (f).

mates for unmanaged stands in the Coast Range. Stands <40
yroldhaveaDDI <5.0; stands40-80yr old have DDI ranging
between 5.0 and 6.5; stands 80-120 yr old have DDI ranging
between 6.5and 7.5; and stands>120yr have DDI >7.5 (T .A.
Spies, unpublished data).

L andscape Capability Index.—Metrics for LCI were
calculated withinthreeradii surrounding thefocal pixel (0.3,
0.8, and 2.4 km) representing patches of 28, 212, and 1,810
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ha. We estimated the proportion of each patch in three
vegetation development classes based on estimates of tree
size and species in each pixel: sapling/pole, small/medium
tree, andlargetree (O’ Neil et al. 2001). Sapling/pole patches
weredefined asforested pixelswith <1.5 m%/haof basal area
or =1.5 m%haof basal area and with dominant and codomi-
nant trees having aquadratic mean diameter (QMD) <25 cm.
Small/medium tree patches were defined as forested pixels



with=1.5 m?/haof basal areawith dominant and codominant
trees having a QM D between 25-50 cm. Large tree patches
weredefined asforested pixelswith =1.5 m%haof basal area
with dominant and codominant treeshavingaQMD >50cm
dbh. The 28 ha patch size was selected because owl nests
tend to be located in clumps of large trees at this scale
(Swindle et al. 1999). The 212 ha patch size was selected
because it represents the scal e beyond which the amount of
large-treeconditionssurrounding owl nestsissimilar towhat
israndomly availableand may bethescal e at which owlsmay
select nest sites(Meyer et al. 1998, p. 34, Swindleet al. 1999).
The 1,810 ha patch represents an estimate of the extent of an
average spotted owl home range (G. S. Miller and E.C.
Meslow, Oregon State University, unpublished data).

LCly =§/S’*S5 * S (3)
where

LCl; = landscape capability index for the focal pixel
S, = habitat index for 28 ha surrounding the focal pixel

(Figure 2¢)

S, = habitat index for 212 hasurrounding the focal pixel
[Equation (4)].

S; = homerangeindex for 1,810 hasurrounding thefocal

pixel [Equation (4)].

Greater weight was applied to areas closest to the focal
pixel (through exponentiation) because habitat in close
proximity to potential nest sites is most influential on
occupancy, productivity, and foraging behavior (Meyer et
al. 1998, Rosenberg and McKelvey 1999, Swindle et al.
1999). By having theindex be multiplicative, we assumed
that the habitat conditions contribute to overall habitat
quality, but that S, S,, and S; cannot entirely compensate
for each other (van Horne and Wiens 1991). Vegetation
included in one patch size also was included in the area
assessed at the next larger patch size (the 28 hapatchisa
portion of the 212 ha patch which is a portion of 1810 ha
patch) to reflect the overall contribution of each scale to
habitat around the focal pixel.

Habitat Index for the 28 ha patch The capability index
increases logarithmically with the proportion of the 28 ha
patch in large-tree condition and declines once the area of
large trees drops below 80% (Figure 2€). This distribution
hasbeen suggested from rel ati onshi ps observed around spot-
ted owl nestsin Oregon (R. G. Anthony, pers. comm.). Owl
nest sites averaged approximately 70% old forest (i.e., large
trees) at thisscaleinthe central Cascadesof Oregon (Swindle
et al. 1999).

Habitat Index for the 212 ha patch The proportion of
large-tree stands is associated with spotted owl nests at this
scale(Rippleetal. 1991, 1997, Meyer et al. 1998, Swindle et
al. 1999). However, small/medium-tree stands may provide
resources for the owl by serving as source habitat for certain
prey species (Eric Forsman, USDA Forest Service, pers.
comm.). Small/medium-tree stands in western Oregon tend
to be used in proportion to availability by foraging owls

(Forsmanet al. 1984, Table4). Thus, theindex for the 212 ha
patch is responsive to availability of both large-tree and
small/medium-tree stands to owls and recognizes that small/
medium-tree stands can be partially compensatory for large-
tree stands (van Horne and Wiens 1991). Nonetheless, we
hypothesize that large-tree stands provide higher quality
habitat than small/medium stands, and reflect thishypothesis
with the coefficients of a 3:1 ratio, in favor of large-tree
conditions. The denominator standardizes the equation as a
proportion.

%Pml "'%Py

== 4
=, 0.75 )
where
S, = capability index for the 212 ha patch surrounding the
focal pixel
f  =foca pixel
P = proportion of large-tree stands within 0.8 km of the
focal pixel

Py = proportion of small/medium-treestandswithin0.8km
of the focal pixel

Habitat Index for the 1,810 ha patch The capability of the
landscape at the 1,810 ha patch size (home range extent) to
contribute habitat to afocal pixel wasidentical to the 212 ha
size, except that it was weighted less heavily in the LCI (no
exponentiation).

Sensitivity Analysis

We conducted a sensitivity analysis to identify variables
that had the greatest effect on HCI scoresinthe Oregon Coast
Range. Theresultsof asensitivity analysisare specifictothe
landscape under assessment. V ariablesthat may appear to be
unrelated to HCI estimates in one landscape may be associ-
ated with HCI scoresin other landscapes that have different
forest patterns. Unfortunately, conducting thisanalysisusing
the range of conditions on the current landscape may not
accurately represent conditionsthat might occur inthefuture
under new management approaches. Consequently we con-
ducted assessments across a range of current conditions to
consider variability in landscape patterns as much as pos-
sible. Therange of variability and moments of each variable
in the model were obtained from three watersheds in the
Coast Range: Nehalem (177,825 ha), Alsea (220,365 ha), and
Umpgua (264,125 ha), to allow evaluation in northern, cen-
tral, and southern watersheds, respectively.

To fit a probability function to each parameter we con-
ducted 1,000 MonteCarloiterationsusingtheL atinhypercube
sampling method applied to the probability distribution of
each variable (Rose et al. 1991, Palisade Corporation 1997,
p. 15-34). HCI scores were computed for each simulation.
Simulations were performed using @Risk (Palisade Corpo-
ration 1997, p. 15-34).

After each simulation, we calculated the Spearman rank
correlation coefficient between each of the habitat variables
and the predicted HCI scores and then used the squared
correlation coefficients (r2) as an index to the percentage of
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thetotal variation in HCI explained by each habitat variable.
Based on the r2 values, we assessed how uncertainties asso-
ciated with estimatesof vegetation or physical variableswere
likely to influence model predictions.

Verification

We assessed model performance using georeferenced
locations of spotted owl nests provided by Dr. Eric Forsman,
Janice Reid, and the Oregon Department of Forestry that are
based on annual systematic surveys for owl nests from four
areas in the Oregon Coast Range (Figure 1). Nests found
between 1990-1999 were used to test the model. Individual
owlsweremarked throughout thisperiod. During thisperiod,
502 nests were reported within 155 distinct owl territories
based on marked individuals. For those territories where >1
nest was reported, we averaged HCI scores for nests within
distinct territories. We could therefore ensure that the 155
nest sites used to verify the model represented nests of 155
marked nesting pairs. We also randomly selected 155 loca-
tionswithinthesystematically surveyed areaswhereno nests
were found during the sample period. Random unused sites
were selected to fall at least 1,600 m (2 800 m radii) from a
known nest. Thisallowed usto independently test all param-
eters in the model except the contribution of the 1,810 ha
home range patch size. Given the density of owls in the
intensively surveyed areas, it was not possibleto find unused
sites >4,800 m from a nest site.

By comparing the original model against six alternative
modelsfor four subindices, we evaluated individual variable
response functions and the necessity of subindices. HCI
scoreswerecal culated for thegeoreferenced nest and random
unused locations based on the original and alternative hy-
potheses. Wethen used logistic regression to eval uate which
model performed best. When evaluating the HCI scores of
known nest occurrences (y = 1) and absences (y = 0), the
logistic regression slope parameter was used to indicate how
well the HCI score separated thetwo groupsfor each hypoth-
esis. A dlope parameter that was statistically significant
indicated that the HCI model did reasonably well at predict-
ing group membership.

Subsequent to determining the efficacy of each model
hypothesis to separate known absences from known occur-
rences, the best performing model hypothesis was deter-
mined based on Akaike' sinformation criterion (AIC) value.
The model hypothesiswith the lowest Al C value wasidenti-
fied as the “best” model, and models with AAIC <5 were
viewed ascompeting, or equal, model s(Burnhamand Ander-
son 1998:63).

Thefollowing alternative model structuresweretested to
identify the best model structure based on AIC values:

M;: The surrounding landscape is not related to habitat
capability for nesting by spotted owls. [Alternative Equa-
tion (1)]

HCI = NCI

M,: Habitat capability increases more rapidly with increas-
ing areaof large-tree standswithin 0.3 km of spotted owl
nests than in the original model (Figure 2€).
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Mg Habitat capability increases more rapidly with more
trees >75 cm dbh (Figure 2¢).

M,: Habitat capability increasesmoreslowly withmoretrees
>75 cm dbh (Figure 2c).

Mg Potential nest treesarerepresented by thedensity of trees
>50 cm dbh (Figure 2f).

Mg: Potential nest treesarerepresented by thedensity of trees
>100 cm dbh (Figure 2f).

Results

Based on the criteria described by Roloff and Kernohan
(1999), our verification process for the northern spotted owl
model received a score of 5.5, with demerits attributed to a
narrow range of HCI scores (8 out of 10 habitat classes), and
using presence—absence data for model verification. None-
theless, our modeling approach seemsto be an improvement
over other theoretical models reviewed by Roloff and
Kernohan (1999).

Sensitivity Analysis

Of the components of the nest stand index, canopy
heterogeneity typically explained themost variationin the
HCI score (Figure 3A through F). Among the L CI compo-
nents, the 28 ha patch size (300 m radius) explained the
most variation in the HCI score for all scales in the LCI
(Figure 3A through F), with canopy heterogeneity and the
density of trees =75 cm dbh also having high explanatory
power in the HCI model. The density of treesin the 10 to
25 cm and 25 to 50 cm diameter classes within the nest
stand index, and the 1,810 ha patch size (2,400 m radius)
explained the least amount of variation in the resulting
HCI score. Among the three basinsinwhich the sensitivity
analysis was performed, model sensitivity was generally
similar (Figure 3).

Model Verification

The seven model structures adequately discriminated
known spotted ow! nest sitesfrom known absences (Table
1). Alternate HCI model 2 (i.e., habitat capability in-
creases more rapidly as a function of the proportion of
large-tree stands within 28 ha around a nest) was selected
as the “best” model, based on AAIC scores (Table 1), but
model 5 was viewed as a competing model. The original
model ranked as the fourth best HCI model. HCI model 2
explained more information among spotted owl nests and
unused sites than the original model. Using an HCI score
of 0.37, overall classification accuracy was optimized at
76% and misclassified nest sites (Type Il error) were
minimized at 10% for model 2 (Table 1). Model 2 was
applied to a representative area of the Coast Range to
provide avisual assessment of performance. Generally, as
HCI scores increased, the proportion of nest sites in-
creased and random sites decreased (Figure 4). Conse-
guently we selected HCI model 2 to depict categories of
habitat capability for the spotted owl in the Oregon Coast
Range (Figure 5).
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Figure 3. Results of Monte Carlo simulations for determination of resulting HCI sensitivity to component variables in three Oregon Coast
Range basins. Partial residuals (R2) are presented for component variables in the original (a), and second through sixth alternate
hypotheses (b through f, respectively). Spearman rank correlation coefficients are presented for each component variable’s correlation
with the resulting HCI score for the second alternate hypothesis (g). Indices included in the analysis were the density of trees 10-25 cm
dbh (tph 1,025), density of trees 25-50 cm dbh (tph 2,550), density of trees >75 cm dbh (tph 75), diameter diversity index (DDI), habitat
index for 28 ha surrounding the focal pixel (300 m), habitat index for 212 ha surrounding the focal pixel (800 m), and the home range index
for 1,810 ha surrounding the focal pixel (2,400 m).
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Table 1. Validation regression and classification accuracy results for the original and six alternative northern spotted

owl HCI models.

Parameter HCI Classification Type 11
Model' AAIC estimate’ breakpoint® accuracy”’ error’
............................. (%o) s
M, 0.0 5.37 0.37 75.5 10.0
M 4.75 5.32 0.28 75.5 11.6
M 8.12 5.46 0.29 75.8 12.3
M, 8.26 5.51 0.28 75.8 11.9
Original 8.56 5.44 0.29 75.5 12.4
M, 10.27 4.69 0.24 76.1 8.4
M, 11.56 5.79 0.33 72.6 13.6

M,: The surrounding landscape is not related to nesting habitat; M, : Habitat capability increases more rapidly with increasing area of large-tree stands within

0.3 km of spotted owl nests than in the original model; M;: Habitat capability increases more rapidly with more trees >75 cm dbh; M,;: Habitat capability
increases more slowly with more trees >75 cm dbh; Ms: Potential nest trees are represented by the density of trees >50 cm dbh; and M(: Potential nest trees

are represented by the density of trees >100 cm dbh.

Maximum likelihood estimate derived from a logistic regression analysis of habitat suitability index score on occurrence data (v = 1 for spotted owl nest

sites and y = 0 for unused sites). All parameter estimates were significant at 2 < 0.0001.

310) and multiplied by 100.

owl nest sites (n = 155) and multiplied by 100.

Discussion

The results of our model development processindicate
that prediction of habitat conditions associated with spot-
ted owl nests could be conducted with reasonabl e accuracy
under current conditions (90% of nest siteswereclassified
correctly). Thus, it is encouraging that similar models
could be developed for other species of interest or concern
within the region. However, habitat capability modeling
representsonly thefirst stepinidentifyingthe potential for
alandscape to allow persistence of a species over an area
over time. For instance, in our example, providing habitat
structure and composition over landscapesthat would | ead
to high HCI values should provide owls with areas in
which they could nest, but our model does not address
issues associated with nest success, intraspecific interac-
tions(e.g., competition, dispersal), or inter-specific inter-
actions (predation or competition). Providing adequate
opportunitiesto nest acrossalandscapeisaprerequisiteto
long-term persistence, but it does not ensure persistence.
Withlong-lived speciessuch asspotted owls, nest success,
mortality, and dispersal may be highly variable from year
to year. Climatic conditions, natural disturbances, and
interactions with other species [e.g., barred owls (Strix
varia)] may cause populations to change despite high
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Figure 4. Proportion of northern spotted owl nest sites and
unused sites as a function of habitat capability index scoresin the
Oregon Coast Range.
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The HCI score, on a scale of 0.00 to 1.00, that best discriminates between spotted owl nests and unused sites.
The number of correctly predicted spotted owl nests and unused sites, at the reported HCI breakpoint, divided by the total number of sites classified (n =

The number of known spotted owl nest sites misclassified as unused sites, at the reported HCI breakpoint, divided by the total number of known spotted

levelsof habitat capability acrossthelandscape. Nonethe-
less, until these demographic parameters can be predicted
with more certainty, the approach that we outlined could
be used to predict general patterns of nest habitat avail-
ability over large areas over time. For instance, at thevery
least it would be prudent for forest management policies
and management actions to ensure that habitat capability
for the species is not reduced. Indeed, if high quality
habitat for a species drops below 30-40% of the land-
scape, then lack of connectivity canisolate habitat patches,
especially for specieswith low gap-crossing ability (With
1999). Although spotted owls disperse widely (Miller
1989), high quality nesting habitat (HCI > 0.5) in the
Oregon Coast Range represents only 5.4% of the region
(Figure5). If other species such as mammals and amphib-
ians with reduced dispersal capabilities are similarly af-
fected, then they may experiencereduced genetic variabil -
ity or other population effects (Mills and Tallmon 1999).

Because our model structure allows us to predict habi-
tat capability from vegetation dynamics models, we can
estimatetherateand distribution of habitat recovery across
complex landscapes. For instance, the approach could be
used to identify disconnected patches of potential nesting
habitat that could be used as the basis for developing
regional management strategies that could improve con-
nectivity as quickly as possible among patches over time
(With 1999). Clearly an adaptive management approach
including population monitoring for this or any other
species of concern would be a key component to any
planning or management strategy.

Within the Oregon Coast Range, conditions of the
landscape immediately surrounding a potential nest patch
seemed to influence HCI estimates more than other vari-
ables. Given the presence of apotential nest sitein a28 ha
patch, central place foragers such as spotted owls may be
selecting locations to nest based on the local patch condi-
tions. Such selection may | ead to areproductive advantage
for the species, but there al so may belandscape effectsthat
are not clear from available data. Reproductive success
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Figure 5. Habitat capability for the northern spotted owl over the Oregon Coast Range under 1988
conditions. An HCI score of 0.37 equates with the demarcation between northern spotted owl nesting

habitat and unused habitat.

may be highly affected by annual climatic conditions,
natural disturbances, prey availability, and mate choice
over thereproductivelife of females. Each of thesefactors
may fluctuate markedly from year to year, and net repro-
ductive successmay relateto the probability of afavorable
combination of these factors occurring in any single nest-
ing season. For afemal eto contributeto popul ation growth,
infrequent nest success may be the norm and may be
related to availability of high quality habitat throughout its
home range. Testing associations between landscape con-
ditions and reproductive success would require informa-

tion on lifetime reproductive success of many females
over arange of landscape conditions.

We used logistic regression analyses and AAIC to test
a number of alternative model structures and variable
weightings. Although we considered simply developing
empirical models using logistic regression to predict the
probability of a nest site at a pixel, the data available to
build the models are constrained by current conditions on
the systematically surveyed landscapes. Predicting habi-
tat quality under future novel conditionsnot representedin
the current landscape would force predictions beyond the
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bounds of the data used to develop the model. The HCI
approach ismore adaptableto arange of future conditions,
and alternative model structures can be evaluated. Based
on available habitat relationships information for the spe-
cies, we chose alternative modelsthat seemed most likely
to influence relationships with reproductive or foraging
success, but there are many alternative model structures
and weightings that could have been tested. We have not
identified an optimal model, but using the process of
testing six alternative model structures, we identified an
improvement over our original model for the Oregon
Coast Range. Clearly this approach provides the opportu-
nity to continue to improve models. Additional improve-
ments can be made through external peer review of the
models and field-testing. Finally, these sorts of habitat
models may lend themselves well to improvements made
through open-source model development (similar in many
respectsto open source programming used inthe computer
industry). In thisinstance, the users of the model simply
have the obligation of making available to all other users
documentation of the improvements made and evidence
for improvement based on additional testing.

Scope and Limitations

In our example, the HCI models are limited in a few
important ways. First, they were developed and tested on
current conditionsin the Oregon Coast Range and may not
performsimilarly in other conditions. Also, weonly evalu-
ated nest site selection and not other aspects of the species
biology. Further, systematic survey data were not avail-
able on nonfederal landswhere popul ations may belowest
and where the LCI estimates may be quite different from
those on federal lands due to past land management prac-
tices. The model should be used cautiously on large land-
scapes dominated by nonfederal lands.

The model that we developed is dependent on the
underlying vegetation model (Ohmann and Gregory, in
press). The vegetation data probably provide reasonable
estimates of structure and composition over large areas
(>1,000 ha), but may perform poorly at small spatial scales
(1-10 ha). Results from the models should be used for
strategic planning but not site-specific management.

Finally, we developed models for the nesting season,
but did not consider habitat requirements during the
nonbreeding season. If overwinter survival represents a
key demographic process to long-term persistence of the
species, then an additional HCI component would have to
be developed.

Conclusions

Our modeling approach, when applied to spotted owl nest
sites, performed well in identifying used sites. The model
provides the basis for understanding the potential rate of
habitat recovery over time under current policies and land
ownership, and can be used to assist in assessment of alterna-
tive policies. Development of these types of models for a
suite of species can allow managers not only to quantify
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changes in nesting quality for selected species, but also
provide estimates of changesin many other resources. Policy
makersand managerswoul d then be capabl e of making more
informed decisions when considering plans where impacts
on many resources must be considered over complex, multi-
owner landscapes.
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APPENDIX 1

Derivation of the Diameter Diversity | ndex

The diameter diversity index is based on tree densities
in different diameter (dbh) classes and is the sum of
weightedindividual indicesfor each diameter class. These
classes include 5-24 cm, 2549 cm, 50-99 cm, and =100
cm. Two steps are involved in determining the individual
indices. First, anindex valuefrom 0 to 1 isdetermined for
each class using coefficients from a straight-line regres-
sion equation in which tree density is the independent
variable. The index value reflects tree density relative to
the median density found in old forest stands (T.A. Spies,
unpubl. data). The regression line runs from the origin to
apoint where X (i.e., density expressed as trees per hect-
are) equals the median from the old stands, and Y (the
individual index) equals 1. A tree density equal to or
greater than the median value within adbh classresultsin
an individual index value of 1.

The second step involves applying a weight to the indi-
vidual index values. The weights for each dbh class are
approximately equal to the relative height differences be-
tween “average” treesin the four dbh classes. Average trees
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weredefined asthosewith dbh’ sequal to the midpointsof the
first three dbh categories, and the mean dbh of trees of the
>100 cm class in the old-growth data set. Heights were
determined with asymptotic equations that predict height
from dbh (Garman et al. 1995, p. 13-22). Tree heights were
determined from several equations representing different
locationsin the Coast Range. These heights were then aver-
agedtoarriveat amean height for each dbh class. Therelative
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differences in height among the dbh classes were approxi-
mately 1, 2, 3, and 4 (i.e., atree of average diameter in the
=100 cm classisabout four timestaller than atree of average
diameter in the 5-24 cm category). The individual index is
weighted by multiplying theindividual index valuefor adbh
class by the weight for that class. The four weighted indi-
vidual index values are then summed to arrive at the DDI,
which has a maximum value of 10.



