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Abstract

A common approach to land use change analyses in multidisciplinary landscape-level studies is to delineate dis-
crete forest and non-forest or urban and non-urban land use categories to serve as inputs into sets of integrated
sub-models describing socioeconomic and ecological processes. Such discrete land use categories, however, may
be inappropriate when the socioeconomic and ecological processes under study are sensitive to a range of human
habitation. In this paper, we characterize the spatial dynamic distribution of humans throughout the forest land-
scape of western Oregon (USA). We develop an empirical model describing the spatial distribution and rate of
change in historic building densities as a function of a gravity index of development pressure, existing building
densities, slope, elevation, and existing land use zoning. We use the empirical model to project changes in build-
ing densities that are applied to a 1995 base map of building density to describe future spatial distributions of
buildings over time. The projected building density maps serve as inputs into a multidisciplinary landscape-level
analysis of socioeconomic and ecological processes in Oregon’s Coast Range Mountains.

Introduction

A common approach to multidisciplinary landscape-
level analysis of socioeconomic and ecological pro-
cesses is to treat humans largely as separate from the
forest landscape. Empirical models of land use
change commonly have been used in landscape anal-
yses to delineate discrete forest and nonforest, forest
and urban, or other similar discrete land use catego-
ries, to serve as inputs into sets of integrated sub-
models describing socioeconomic and ecological pro-
cesses and conditions (see, for example, Bockstael
(1996) and Irwin and Geoghegan (2001), Kline et al.
(2001), Schoorl and Veldkamp (2001)). Such delinea-
tions often are intended to identify where humans are
and are not present on the landscape. We are aware

of only two studies that attempt to treat humans as
part of the landscape, by describing a range of human
habitation. Wear and Bolstad (1998) develop an em-
pirical model of building densities to describe the
�spatial diffusion� of human populations, but ulti-
mately use their building density to describe discrete
forest and nonforest land use categories. Fagan et al.
(2001) suggest several modeling approaches for de-
scribing housing starts near cities, but lack empirical
data with which to estimate and test empirical ver-
sions of their models. We build upon these works by
examining the spatial distribution and rate of change
in historic building densities in western Oregon, USA
and use this information to characterize the future
spatial distributions of humans throughout Oregon’s
Coast Range Mountains.
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For many applications, a discrete treatment of land
use may be appropriate, when the landscape-level so-
cioeconomic and ecological processes under study are
relatively insensitive to low levels of human habita-
tion. For example, in many studies land use modeling
is focused more on characterizing changes in land (or
vegetative) cover than on characterizing the level of
human habitation. Examples of such studies include
models of agricultural cropping patterns (Serneels
and Lambin 2001; Walsh et al. 2001), forest succes-
sion (Turner et al. 1996; Helmer 2000), or deforesta-
tion (Geoghegan et al. 2001; Schneider and Pontius
2001) to name a few. Also, the specific intent of many
studies is to characterize the probability of a particu-
lar type of land use change occurring, to identify po-
tential priority conservation areas for example (Swen-
son and Franklin 2000), or to identify causal factors
of land use change (for example, Nelson and Heller-
stein (1997)), rather than projecting potential future
land use scenarios. However, in other applications,
where a more explicit characterization of potential
future land uses is desired or where land use projec-
tions will serve as inputs to other models of socio-
economic and ecological processes that may be sen-
sitive to a range of human habitation, discrete land
use categories may be inadequate to characterize the
spatial and temporal interactions of humans as agents
affecting landscape-level processes under study.

For example, multidisciplinary studies of forest
landscapes commonly delineate discrete forest and
non-forest land categories as key inputs in sub-mod-
els describing timber management and production,
both as an economic activity and as an important fac-
tor affecting landscape-level ecological processes
such as habitat viability. Research, however, suggests
that the intensity of timber management and produc-
tion activities conducted by private forestland owners
can be negatively correlated with human population
densities such that they vary across forest landscapes
depending on human population levels (Barlow et al.
1998; Wear et al. 1999). Habitat viability for certain
species itself may vary according to a range of hu-
man habitation, in addition to land cover characteris-
tics associated with general land use categories. Fire
also may be an important factor in landscape-level
modeling. Some forestry analysts hypothesize that in-
creasing numbers of residences located in forested
landscapes increase the likelihood of wildfire and in-
crease fire suppression costs when firefighting re-
sources are re-directed to save homes instead of con-
taining fires (Milloy 2000). In these and perhaps other

examples, discrete land use categories may be less
useful as inputs into landscape-level models of socio-
economic and ecological processes than would be
more detailed information describing ranges of hu-
man habitation on the landscape.

The empirical methods used to model changes
among discrete land use categories can involve other
difficulties. Empirical land use models based on dis-
crete land use data commonly are estimated using
logit or probit techniques that result in projected prob-
abilities of land use change rather than projections of
discrete land use categories. These projected proba-
bilities can be difficult to interpret or incorporate into
other socioeconomic and ecological models. Discrete
land use models also may be limited by the specific
characteristics of available land use data. Discrete
land use models often are estimated using data col-
lected from land inventories, such as the National Re-
sources Inventory (Nusser and Goebel 1997) and the
USDA Forest Service’s Forest Inventory and Analy-
sis Program inventories (see, for example, Frayer and
Furnival (1999)), which may be designed to meet spe-
cific informational objectives. These inventories may
categorize land according to criteria or definitions that
may be imperfect or inappropriate for examining so-
cioeconomic and ecological processes of interest. Ide-
ally, a modeling approach that allows for a range of
human habitation, more definitive projections of
change, and greater flexibility in its applicability to
issues under study is desirable.

In this paper, we build upon the work of (Wear and
Bolstad 1998; Fagan et al. 2001) by characterizing the
spatial distribution of humans throughout the land-
scape comprising Oregon’s (USA) Coast Range
Mountains. We develop an empirical model describ-
ing the spatial distribution and rate of change in his-
toric building densities in western Oregon as a func-
tion of a gravity index of development pressure,
existing building densities, slope, elevation, and ex-
isting land use zoning. We use the empirical model to
project pixel-level changes in building densities that
are applied to a 1995 base year building density base
map to describe the future spatial distributions of
buildings through 2055. The building density maps
are key inputs in other socioeconomic and ecological
sub-models comprising the Coastal Landscape Anal-
ysis and Modeling Study in western Oregon (USA).
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Study Area

The Coastal Landscape Analysis and Modeling Study
(Spies et al. 2002) is a multidisciplinary research ef-
fort to analyze the aggregate ecological, economic,
and social consequences of forest policies in western
Oregon’s Coast Range Mountains. The study region
borders the Pacific Ocean on the west and the Wil-
lamette Valley on the east (Figure 1). Current forest
policies in the region attempt to achieve a particular
mix of forest goods and services by spatially distrib-
uting different forest practices over watersheds or
landscapes, and across multiple ownerships. A partic-
ular policy concern in recent years has been ensuring
sufficient habitat for spotted owls (Strix occidentalis
caurina) and coho salmon (Oncorhynchus kisutch).

The project is intended to provide quantitative
analyses testing the assumptions of current forest pol-
icies to determine if projected future outcomes are
consistent with policy goals. Specific objectives in-
clude: 1) characterizing current spatial patterns and
historical dynamics of ecological, economic, and so-
cial components of the Coast Range ecosystem; 2)
developing ecological, economic, and social models
describing these components, and the linkages among
each; and 3) projecting the aggregate impacts of cur-
rent forest policies in the Coast Range on ecosystem
conditions and economic outputs over time.

One socioeconomic factor that is expected to have
a significant impact on projected forest policy out-
comes in the Coast Range is land-use change result-
ing from the conversion of forestland to residential,
commercial, and industrial uses. Currently, seventy
percent of Oregon’s 3.4 million people live in the
Willamette Valley, with the valley population ex-
pected to grow by 1.3 million new residents in the
next forty years (McGinnis et al. 1996; Franzen and
Hunsberger 1998). Projected population growth has
motivated increasing interest in examining where
land-use changes are most likely to affect forests and
the goods and services they provide throughout the
region. Urbanization potentially can cause the forest-
land base to become more fragmented, adversely im-
pacting ecosystem conditions and economic outputs.
Ecological impacts could include direct loss of habi-
tat or diminished habitat quality. Economic impacts
could include less intensive forest management for
commercial timber production resulting in reduced
economic output. The goal of land-use modeling in
the Coastal Landscape Analysis and Modeling Study
is to place current and future forest policies in an ap-
propriate socioeconomic context by accounting for
the future distribution of humans throughout the study
region.

Figure 1. Coastal landscape analysis and modeling study region in Western Oregon.
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Methods

Initial land use models developed for the study were
based on readily available plot-level data describing
historical changes among discrete forest, agriculture,
and urban land-use categories provided by the USDA
Forest Service’s Forest Inventory and Analysis Pro-
gram (Kline and Alig 1999; Kline et al. 2001). These
data were used to estimate probit models describing
the probability that forest and agriculture plots con-
verted to urban uses in western Oregon and western
Washington, as a function of several explanatory var-
iables. Integrating the projected probabilities into
other sub-models, however, presented difficulties. A
specific need of the study is the delineation of future
forestland areas at each modeling time interval. In
western Oregon, the proportion of land in forest use
historically has been quite high relative to the propor-
tion in urban uses, based on Forest Inventory and
Analysis land use definitions. As a result, projected
probabilities describing the likelihood of future con-
versions of forestland to urban uses generally are
quite low. However, analysis based on more recently
available data describing building densities in west-
ern Oregon suggests that although the conversion of

land from the discrete forest to urban use categories
historically has been a relatively slow process, land
use change has occurred in the form of relatively dis-
persed, low-density development (Azuma et al.
1999). Characterizing this particular form of develop-
ment is the focus of the current land use modeling ef-
fort.

We use spatial photo-point data depicting histori-
cal building densities to estimate an empirical model
describing historical changes in building densities in
western Oregon as a function of several explanatory
variables, including a gravity index of development
pressure (Figure 2). We combine the empirical model
with projected future gravity index values to project
future changes in building densities that are applied
to a 1995 map of building density to compute pro-
jected future building densities through 2055. We
convert projected population densities into discrete
land use classes using a decision rule that defines the
conversion of forestland to low-density and urban de-
velopment as a building density threshold.

Figure 2. General modeling procedure.
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Building density data

Data describing building densities in western Oregon
were developed by the Pacific Northwest Research
Station’s Forest Inventory and Analysis Program. The
data consist of photo-point observations of building
density (number of buildings in an 80-acre (32-ha)
vicinity) on non-federal land taken from aerial pho-
tographs in 1974, 1982, and 1994 (Azuma et al.
1999). With nearly 24,000 photo-points, the data pro-
vide almost 72,000 photo-point observations of build-
ing density varying in space at three points in time.
By tracking building densities on individual photo-
points at each of the three points in time, we were
able to construct a data set comprised of two obser-
vations of change in building density for each photo-
point.

A relatively large proportion of the photo-points
show building densities of zero and do not change
over the three time points described by the data. This
results in a large number of zero’s in the data set that
complicates estimation of the empirical models. To
alleviate these problems, we omitted observations
showing building densities of zero. Computations of
projected values for these omitted observations based
on estimated coefficients of the estimated empirical
models suggest that areas where building densities are
less than 1 building per 80-acre (32 ha) are relatively
unlikely to gain a sufficient number of buildings to
�convert� to low density or urban development as de-
fined by the landscape modeling study, due to poor
physical access and steep slopes. We combined the
building density data with other spatially-referenced
socioeconomic and other data using a geographic in-
formation system to develop explanatory variables in-
cluding slope, elevation, and land use zoning adopted
under Oregon’s land-use planning program. The re-
sulting data set used to estimate the empirical models
is comprised of 12,866 observations of changes in
building densities from one time point to the next.

Characterizing development pressure

The value of land for residential, commercial, or in-
dustrial uses is perhaps the single most important fac-
tor affecting whether or not land is converted from a
forest use to a developed use. Conceptually, the value
of land in developed uses has been viewed as a func-
tion of the spatial proximity to city centers (Mills
1980; Miyao 1981; Fujita 1982; Wheaton 1982; Ca-
pozza and Helsley 1989). The traditional Von Thunen

view of spatial proximity to cities had been viewed
as affecting the profitability of non-developed land
uses, such as agriculture and forestry, in terms of the
costs associated with transporting forest and agricul-
tural commodities to market (Barlow (1978), p. 37).
However, modern society associates spatial proxim-
ity more with maximizing the difference between
quality of life factors such as housing and neighbor-
hood amenities, and the costs associated with com-
muting to employment locations. Additionally, other
physical and institutional land characteristics may
also affect the value of land in developed uses and the
decisions of individual landowners regarding land
use. Steeper slopes may increase building construc-
tion costs. Land use zoning may restrict certain types
of development. We use a gravity index that inte-
grates information about the sizes and locations of
cities to describe the influence that cities have on
land’s development potential. We combine this with
other variables describing physical land characteris-
tics, such as slope and elevation, and institutional fac-
tors, such as land use zoning regulation, to develop
an empirical model characterizing the value of land
in developed uses.

Gravity models were initially developed by Reilly
(1929) to describe the degree to which cities attract
retail trade from surrounding locations (see for exam-
ple Haynes and Fotheringham (1984)). A common
gravity index specification for a single city is

Gravity index �
Population

�Distance�2
(1)

and is directly proportional to the population of the
city and inversely proportional to the square of the
distance between the city and the location of interest.
Gravity indices also have been used to account for the
combined influence of population and proximity as
economic forces effecting land-use change. For exam-
ple, Shi et al. (1997) include a gravity index as an ex-
planatory variable in a county-level hedonic model of
farmland prices. Their ‘urban influence potential var-
iable’ is constructed as the sum of the gravity indices
computed for each of the three major cities nearest to
each county and is a statistically significant variable
in their empirical model of farmland value. Mathe-
matical specifications other than Equation (1) are pos-
sible by including multiple cities in the gravity index
computation and by varying the exponents on popu-
lation and distance. In this way, gravity indices can
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be adapted to the specific conditions or ‘social con-
text’ of the geographic region under study (Haynes
and Fotheringham (1984), pp. 12–16).

One of the most important factors affecting land’s
development potential is its commuting proximity to
employment opportunities available in existing cities.
Land within a short commuting distance to a given
city likely will have a greater development potential
than land within a relatively longer commuting dis-
tance. Similarly, land within a reasonable commuting
distance of a large city likely will have a greater de-
velopment potential than land within the same com-
muting distance of a relatively small city. Cities be-
yond a reasonable commuting distance likely will
have very little, if any, influence on development po-
tential. We describe these influences using a single
gravity index computed as

GRAVITY INDEXi

� �
1

K

POPULATIONk�60 � TIMEik

60 � (2)

where K represents the number of cities within a 60-
minute drive (or commute) of each photo-point i,
POPULATION is the population (U.S. Bureau of
Census 1992) of each city k, and TIME is the driving
time in minutes between photo-point i and city k. As
computed, the gravity is the sum of the populations
of all cities within a 60-minute commute of each pho-
to-point, weighted by the estimated driving time to
each city’s edge. The index sets a 60-minute thresh-
old on the ‘reasonable’ commuting time, based on our
assumption that most Oregonians are probably un-
willing to commute more than one-hour to work.
Varying this threshold to reflect somewhat shorter or
longer maximum reasonable commuting times did not
substantially affect the sign, magnitude, or statistical
significance of the gravity index variable in model
estimation.

The complete set of cities incorporated into the
gravity index computation included 45 western Ore-
gon cities comprising 5,000 or more persons in 1990
(U.S. Bureau of Census 1992). Adjacent cities were
combined and treated as larger metropolitan areas,
reducing the total number of cities and metropolitan
areas included in the analysis to 30. Driving times
used to calculate the gravity index were estimated us-
ing a geographic information system map of existing
roads to create a friction surface based on average
driving times assumed for different types of roads. We

assumed that drivers could average speeds of 60 miles
per hour (97 km h−1) on primary roads, 25 mile per
hour (40 km h−1) on secondary roads, and 10 miles
per hour (16 km h−1) where there are no roads. The
driving times are based on roads data from a single
point in time, because we lack data describing new
roads and improvements. As a consequence, we ig-
nore potential endogeneity between land use change
and road building noted by Irwin and Geoghegan
(2001) among others.

Model estimation

The building density data consist of observations
taken at three points in time (1974, 1982, and 1994),
resulting in two observations of building density
change per sample point. The dependent variable
�DENSITY was constructed by computing changes in
building densities observed at each sample point at
ten-year intervals between 1974 and 1984, and be-
tween 1984 and 1994. Building density data for 1984
were estimated by interpolation between 1982 and
1994 values, and rounding to the nearest whole num-
ber. The dependent variable �DENSITY is measured
as a count and so is not continuous. Assuming �DEN-
SITY is distributed as a Poisson leads to the negative
binomial model

pr��DENSITY � Yi¦�� �
e � � i�

i
yi

yi!

yi � 0, 1, 2, ...; i � 1, 2, ..., n

where ln��i� � ln��̂i� � � � ��xi � �

(3)

where � is a random variable and exp(�) has a gamma
distribution with mean 1 and variance �, xi is a vec-
tor of independent variables, and �� is a vector of co-
efficients to be estimated (Greene 1997).

The panel nature of the data – generally two ob-
servations of building density change per photo-point
– creates the potential for correlation among the pairs
of time-series observations for individual photo-
points to deflate standard errors and bias estimated
coefficients. These potential correlations can be ac-
counted for using a random effects negative binomial
model (see Greene (1995), pp. 570–571 for a deriva-
tion). Since the group effects are conditioned out (not
computed), projected values cannot be computed us-
ing the random effects model (Greene (1995), p. 567).
However, the estimated model coefficients can be
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used for comparison with those of the negative bino-
mial model estimated without random effects.

A final estimation issue arises from our use of spa-
tial observations of land use. Spatial autocorrelation
can result from omitted spatial variables that influ-
ence the land-use decisions of landowners, such as
weather-related variables, and spatial behavioral rela-
tionships, such as common ownership of neighboring
photo-points. The first leads to inefficient but asymp-
totically unbiased estimated coefficients, while the
second can lead to inefficient and biased estimated
coefficients (Nelson and Hellerstein 1997). Although
no standard statistical protocols exist, methods to treat
spatial autocorrelation in land-use analyses have been
devised and tested, including the use of spatial lag (or
neighborhood) variables based on the variable values
of neighboring pixels (see, for e.g., Bockstael (1996)
and Turner et al. (1996), Nelson and Hellerstein
(1997), Wear and Bolstad (1998), Schneider and Pon-
tius (2001)) and purposefully sampling to reduce the
potential of autocorrelation arising from spatial be-
havioral relationships (see, for e.g., Fortin et al.
(1989) and Haining (1990), Helmer (2000)). In our
case, building density data are based on a systematic
sampling of photo-points roughly spaced on a 2.4-ki-
lometer grid. We are unable to construct a spatial lag
variable because pixel-level information regarding
the actual building density between sample photo-
points is unavailable. Given the 2.4-kilometer sample
spacing, we assume that the effects of any spatial be-
havioral relationships not accounted for by the grav-
ity index and other variables are minimal.

Results

The general regression equation describes the change
in building density occurring on individual photo-
points from one time point to the next as

�DENSITY

� f�GRAVITY INDEX, BUILDING DENSITY,

SLOPE, ELEVATION, URBAN GROWTH

BOUNDARY, FARM ZONE, FOREST ZONE�
(4)

where the specific explanatory variables are described
in Table 1. Results from Poisson regression, negative
binomial regression, and negative binomial regression
with random effects are shown in Table 2. All models
are highly significant (P < 0.01). Random effects co-
efficients are reasonably consistent with negative bi-
nomial coefficients, though the statistical significance
of the beta coefficient in the negative binomial regres-
sion with random effects suggests that statistically
significant random effects may be present.

Estimated coefficients for the linear and quadratic
GRAVITY INDEX variables are statistically signifi-
cant (P < 0.01) and together suggest that, over time,
building densities increase at an increasing rate with
greater proximity to existing cities within commuting
distance and greater population sizes of those cities
(Table 2). Estimated coefficients for the linear and
quadratic BUILDING DENSITY variables are statis-
tically significant (P < 0.01) and together suggest that
existing building densities have a positive but dimin-
ishing impact on future building density changes. The
estimated coefficients for SLOPE are negative, sug-

Table 1. Descriptions of Explanatory Variables Tested in the Empirical Model

Variable Description

GRAVITY INDEX Equal to the average of the gravity index computed (using Equation (2)) at the beginning of each

time period and the gravity index computed at the end of each time period (times 1/100,000).

City populations for study years for non-Census years estimated by interpolating between popula-

tions reported for Census years (U.S. Bureau of Census 1992).

BUILDING DENSITY Number of buildings within an 80-acre circle surrounding photo-point (Azuma et al. 1999) at the

beginning of each time period (times 1/100).

SLOPE Percent slope at the sample point (times 1/100).

ELEVATION Elevation in meters.

URBAN GROWTH BOUNDARY Variable equals 1 if plot is located in an urban growth boundary or rural residential land use zone;

0 otherwise.

FARM ZONE Variable equals 1 if plot is located in a farm zone; 0 otherwise.

FOREST ZONE Variable equals 1 if plot is located in a forest zone; 0 otherwise.
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gesting that slope has a negative impact on changes
in building densities, but the coefficients’ statistical
significance is notable only in the Poisson regression
model (P < 0.05) and the random effects negative bi-
nomial regression (P < 0.10). As defined, it is likely
that the slope variable only poorly represents the im-
pact of slope on average building density within the
80-acre vicinity of each sample point.

The estimated coefficients for ELEVATION are
positive and statistically significant (P < 0.01, P <
0.01, and P < 0.05) in each of the three models, sug-
gesting that elevation has a positive impact on
changes in building densities. This finding is consis-
tent with that of Wear and Bolstad (1998) who at-
tribute their positive elevation coefficient to the pos-
sibility that higher elevations command better views,
making them more attractive as building sites. Ex-
planatory variables included to account for the poten-
tial impacts of land-use zoning adopted under Ore-
gon’s land-use planning program are negative and
statistically significant (P < 0.01), suggesting that the
implementation of land use zoning may have reduced
the rate at which building densities increase over time
(Table 2).

Model validation procedures

We evaluated the forecasting performance of the es-
timated negative binomial model in three ways: 1)
examining the percentage of correct projections with-
in-sample; 2) estimating auxiliary models after re-
serving validation data sets; and 3) examining several
information indices and statistics based on model pro-
jections. First, we used the estimated negative bino-
mial model coefficients (Table 2) to compute pro-
jected changes in building densities, then added the
projected changes to the initial building densities to
compute within-sample projected ending building
densities for each observation (N = 12,866). We com-
pared projected ending building densities to actual
ending building densities to compute the percentage
of correct projections.

The percentage of correct projections diminishes
as ending building density increases, from a high of
52.0% for observations having an ending building
density of 2 buildings per 80-acre (32-ha) to a low of
15.3% for observations having an ending building
density of 8 (Table 3). The percentage of model pro-
jections correct within one building is higher, ranging
from 99.5% for observations having an ending build-
ing density of 1 building per 80-acre (32-ha) to a low
of 63.6% for observations having an ending building

Table 2. Estimated Coefficients of the Empirical Models Describing Changes in Building Densities in Western Oregon

Variable Poisson regression

coefficient

Negative binomial regression Negative binomial regres-

sion with random effects

Coefficient Marginal effect

GRAVITY INDEX −0.167 (−17.54) −0.293 (−15.59) −0.432 −0.183 (−9.125)

GRAVITY INDEX2 0.037 (26.44) 0.051 (16.90) 0.075 0.027 (9.913)

BUILDING DENSITY 10.813 (84.13) 13.453 (36.71) 19.800 9.333 (31.64)

BUILDING DENSITY2 −10.070 (−48.86) −13.436 (−30.30) −19.774 −12.207 (−26.22)

SLOPE −0.338 (−1.97) −0.191 (−0.56) −0.281 −0.078 (−0.21)

ELEVATION 0.517 (9.96) 0.470 (4.08) 0.691 0.400 (3.62)

URBAN GROWTH

BOUNDARY

−0.531 (−22.06) −0.359 (−7.04) −0.528 −0.503 (−13.05)

FARM ZONE −1.314 (−49.02) −1.339 (−32.17) −1.748 −1.027 (−25.08)

FOREST ZONE −1.210 (−34.18) −1.188 (−21.00) −1.970 −0.861 (−16.50)

Alpha – 2.207 (45.94) – 2.753 (26.59)

Beta – – – 2.075 (18.09)

Summary Statistics: N = 12,866 N = 12,866 N = 12,866

Log-L = −24,687 Log-L = −16,479 Log-L =−16,550

�2 = 16,708 �2 = 16,415

df = 8 df = 1

P < 0.0001 P < 0.0001

Note: The t-statistics for each estimated coefficient are in parentheses.
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density of 7. Greater accuracy of projections in the
lower range of ending building densities likely is due
in part to the relatively large proportion of sample
observations comprising relatively low ending build-
ing densities.

The immediate use of the model within the Coastal
Landscape Analysis and Modeling Study is to locate
forestland in the study region comprising ending
building densities of greater than 8 buildings per 80-
acre (32-ha) (64 per square mile) – the point at which
timber management and production is assumed to
cease in study sub-models. This threshold is consis-
tent with an average forest parcel size of 10 acre (0.04
km2) building (house), which is the minimum forest
parcel size eligible for preferential assessment as for-
estland for property tax purposes in the State of Or-
egon (Oregon Department of Revenue 1998). Based
on an average household size of 2.45 persons (Azuma
et al. 1999), the 64 buildings per 2.59 km2 threshold
is equivalent to 157 people per square mile, which
also is relatively consistent with the population den-
sity found by Wear et al. (1999) to be the point at
which commercial timber production ceases. The per-
centage of correct projections for the two classes is
relatively high – 97.0% for the � 8 class and 86.7%
for the > 8 class – suggesting that the model is prob-
ably adequate for the immediate purposes to which it
is used in the Coastal Landscape Analysis and Mod-
eling Study (Table 3).

As a second model evaluation, we estimated five
auxiliary models after omitting roughly 20% of the
observations from the full sample (N = 12,866) as

validation data sets. A common approach to evaluat-
ing the forecasting performance of empirical models
is to reserve a portion of sample data prior to model
estimation for later use as a validation data set. We
initially declined to do this so that we could take full
advantage of the relatively limited number of obser-
vations of actual building density changes. The five
auxiliary models, however, enable us to evaluate our
model specification by examining the sensitivity of
coefficient estimates to the omission of the validation
data sets and by examining the percentage of correct
projections resulting from the five auxiliary models
when applied to the validation data sets.

The five auxiliary models are highly significant (P
< 0.01) and all coefficient estimates are consistent in
sign, magnitude, and statistical significance with
those of the main model estimated with the full data
sample (N = 12,866), with the exception of the
SLOPE coefficient estimates that are statistically in-
significant (P > 0.20) in all models (Table 4). We
compared coefficient estimates of the five auxiliary
models to 95% confidence bounds computed for the
coefficient estimates of the main model. All auxiliary
model coefficient estimates fall within the 95% con-
fidence bounds, with the sole exception of the
BUILDING DENSITY2 coefficient estimate from
auxiliary model 2, which falls outside the lower
bound for that variable. Together, these factors sug-
gest that the five auxiliary models do not differ sig-
nificantly from the main model. The weighted aver-
age percentage of correct projections of ending
building classes of � 8 and > 8 buildings per 80 acre

Table 3. Percentage of Correct Projections of Ending Building Density and Ending Broad Building Density
Class

Class Percent in class Percent correctly projected Percent correctly projected within one building

Ending building densitya

1 25.4 50.9 99.5

2 17.0 52.0 99.0

3 12.8 43.7 91.5

4 8.6 36.7 83.1

5 6.2 23.6 71.2

6 5.2 21.9 66.8

7 3.6 18.9 63.6

8 3.1 15.3 75.1

> 8 18.1 86.7 89.6

Ending broad building density class

� 8 81.9 97.0 –

> 8 18.1 86.7 –

a Number of buildings per 80-acre (32-ha), rounded to nearest whole building if less than or equal to 8.
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(32-ha) resulting from the five auxiliary models is
97.0% for the � 8 class and 86.6% for the > 8 class.

As a third model evaluation, we computed several
information indices and statistics suggested by Wear
and Bolstad (1998), based on the ending building
density projections from the main and auxiliary mod-
els. The index H(A) describes the total uncertainty
that potentially can be explained by the estimated
models, and is defined as

H�A� � � �
j � 1

J

p�aj�ln�p�aj��

where p(aj) is the proportion of observations in the
validation data set actually observed in building den-
sity class aj and J is the total number of building den-
sity classes projected. The index I(A;X) describes the
additional information contained in the estimated

models, and is defined as

I�A;X� �
1

m
�

i � 1

m

�
j � 1

J

	ifln�p�aj¦xi�

p�aj�
�

where 	 if = 1 if class j is observed at observation i (	
if = 0 otherwise), xi is the vector of independent var-
iables describing observation i, p(aj|xi) is the model-
estimated probability of building density class j oc-
curring at observation i, and m is the number of
observations in the validation data set. The index
EI(A;X) describes the expected information provided
by the estimated models, and is defined as

EI�A;X� �
1

m
�

i � 1

m

�
j � 1

J

p�aj¦xi�ln�p�aj¦xi�

p�aj�
�

(Wear and Bolstad 1998).

Table 4. Estimated Coefficients of Five Auxiliary Negative Binomial Models Compared to 95% Confidence Bounds Computed for Main
Model Coefficients (Table 3)

Auxiliary negative binomial model estimated coefficientsa 95% confidence bounds of main

model coefficientsb

Variable 1 2 3 4 5 Lower Upper

GRAVITY

INDEX

−0.265 −0.312 −0.280 −0.315 −0.297 −0.330 −0.257

GRAVITY

INDEX2

0.047 0.053 0.050 0.054 0.051 0.045 0.057

BUILDING

DENSITY

13.114 14.092 13.553 13.260 13.349 12.735 14.172

BUILDING

DENSITY2

−12.956 −14.754 −13.421 −12.935 −13.394 −14.305 −12.567

SLOPE −0.124 0.154 −0.465 −0.109 −0.412 −0.856 0.475

ELEVATION 0.468 0.388 0.541 0.509 0.435 0.244 0.695

URBAN

GROWTH

BOUNDARY

−0.374 −0.365 −0.368 −0.379 −0.317 −0.459 −0.259

FARM ZONE −1.374 −1.355 −1.343 −1.322 −1.301 −1.420 −1.257

FOREST

ZONE

−1.192 −1.180 −1.190 −1.170 −1.207 −1.298 −1.077

Alpha 2.256 2.218 2.210 2.135 2.206 2.113 2.301

Summary

statistics:

N = 10,240 N = 10,261 N = 10,275 N = 10,322 N = 10,366 – –

LL = −13,192 LL = −13,132 LL = −13,309 LL = −13,130 LL = −13,146

�2 = 13,424 �2 = 13,558 �2 = 13,637 �2 = 11,749 �2 = 13,219

df = 1 df = 1 df = 1 df = 1 df = 1

P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

a Estimated by omitting roughly 20% of the sample observations as validation data sets based on a random selection process. b Computed for
negative binomial model estimated coefficients reported in Table 2.
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The three indices enable computation of three test
statistics with which to evaluate the models as pre-
dictors of ending building density classes. The pro-
portion of uncertainty explained by the models is a
pseudo-r2 defined as U2 = I(A;X)/H(A) and is a test
of the usefulness of the models at projecting ending
building density classes. The index I(A;X) is nor-
mally distributed with a mean of EI(A;X) and a var-
iance of V(A;X), enabling a t-test of the null hypo-
thesis HO: I(A;X) = EI(A;X), that provides a test of
the accuracy of the empirical models. The log-likeli-
hood ratio defined as LLR = 2nI(A;X) is distributed
as a chi square with degrees of freedom equal to the
number of estimated coefficients in the estimated
models, and is a test of the overall significance of the
empirical models (Hauser 1978; Wear and Bolstad
1998).

Information indices and statistics computed based
on projections of ending building density and ending
broad building density class resulting from the main
and auxiliary models are provided in Table 5. The
log-likelihood ratios (LLR) and t-statistics computed
based on the ending building density projections sug-
gest that the empirical models are both statistically
significant and accurate, but each of the pseudo-r2

(U2) values suggest that the proportion of uncertainty
explained by the empirical models is relatively low.

The log-likelihood ratios (LLR) and t-statistics com-
puted based on the projected ending broad building
density classes suggest that the empirical models also
are both statistically significant and accurate. How-
ever, in these cases, the pseudo-r2 (U2) values sug-
gest that the proportion of uncertainty explained by
the empirical models of ending broad building den-
sity class is much higher, ranging between 74.0% and
78.5%. Consistent with our earlier examination of the
percentage of correct projections, the U2 values sug-
gest that the model is better at projecting coarser (or
less precise) ending building density classes. Greater
accuracy in projecting less precise ending building
density classes, however, is not the result of a spatial
scale (or ‘grain size’) effect (see, for example, Jener-
ette and Wu (2001)). Rather, it is the result of reduc-
ing through aggregation the number of building den-
sity classes we are attempting to project with the
model, from nine (1, 2, 3, 4, 5, 6, 7, 8, > 8) to two
( � 8, > 8).

Integrating building densities with ecological
models

The empirical model was used to create geographic
information system maps depicting spatial projections

Table 5. Information Indices and Statistics Computed for the Main Model Projections Applied to the Sample Data and Auxiliary Model
Projections Applied to Omitted Validation Data Sets

Index or statistica Main Model m = 12,866 Auxiliary Models

1 m = 2,626 2 m = 2,605 3 m = 2,591 4 m = 2,544 5 m = 2,500

Projecting ending building density (1, 2, 3, 4, 5, 6, 7, 8, > 8)

I(A;X) 0.093 0.098 0.084 0.083 0.093 0.102

EI(A;X) 0.106 0.099 0.106 0.107 0.115 0.111

V(A;X) 0.038 0.025 0.038 0.040 0.044 0.043

H(A) 1.288 1.270 1.286 1.237 1.302 1.338

U2 = I(A;X)/H(A) 0.072 0.078 0.066 0.067 0.071 0.076

t-statistic 0.066 0.004 0.113 0.119 0.105 0.042

LLR = 2nI(A;X) 2,387.9 517.3 439.2 429.6 473.2 509.5

Projecting ending broad building density class ( � 8, > 8)

I(A;X) 0.356 0.334 0.355 0.353 0.388 0.348

EI(A;X) 0.106 0.321 0.348 0.332 0.374 0.350

V(A;X) 0.345 0.298 0.278 0.289 0.275 0.270

H(A) 0.472 0.443 0.480 0.459 0.494 0.484

U2 = I(A;X)/H(A) 0.754 0.753 0.740 0.769 0.785 0.719

t-statistic 0.022 0.024 0.014 0.039 0.028 0.002

LLR = 2nI(A;X) 9,168.3 1,753.6 1,850.6 1,828.2 1,976.2 1,742.0

a Computed following Wear and Bolstad (1998). The statistics define a pseudo-r2 (U2) measure of usefulness, a t-test of accuracy (HO:
I(A;X) = EI(A;X) where V(A;X) =), and a � 2 test (LLR) of statistical significance of the model projections.

357



of future building density distributions throughout the
Coastal Landscape Analysis and Modeling Study re-
gion. A base year 1995 map of building densities was
developed from the 1994 photo-point data by inter-
polating between photo-point building density values.
The estimated negative binomial model coefficients
(Table 2) were combined with projected gravity in-
dex values based on population projections for west-
ern Oregon cities to project changes in building den-
sities at 10-year time intervals. Projected population
figures are based on county-level projected popula-
tion growth through 2010 (McGinnis et al. 1996) and
on state-level projected population growth for 2010
to 2050 reported by the U.S. Bureau of Census. Pop-
ulation projections for the years 2050 to 2095 are es-
timated by extrapolation. Projected changes in build-
ing densities for each 10-year time interval were
added to the beginning building density map for that
interval to obtain the ending building density map.
For example, the projected changes occurring be-
tween the 1995 base year and 2005 were added to the
1995 base year building density map, to obtain a 2005
building density map. The 2005 map was combined
with 2005 to 2015 projected changes in building den-
sities to obtain a 2015 map. The resulting maps en-
able projected future changes of human habitation of
forestland, as described by building densities, to be
incorporated into other Coastal Landscape Analysis
and Modeling Study sub-models describing other so-
cioeconomic and ecosystem processes and conditions.

For the specific purposes of the Coastal Landscape
Analysis and Modeling Study, the building density
maps are incorporated into sub-models describing
timber production and habitat viability according to
building density thresholds. Initial land use conditions
distinguish forestlands from agricultural lands using
a vegetation map depicting forest and non-forest
cover in 1995. These delineations remain constant
throughout the modeling time horizon. Forestlands
are distinguished from lands characterized by residen-
tial, commercial, or industrial uses by applying a set
of decision rules to the building density maps at each
modeling time interval. For timber production mod-
eling purposes, timber production is assumed to cease
on forestlands once a building density of 64 buildings
per 2.59 km2 is attained. For habitat viability model-
ing purposes, habitat is assumed to cease functioning
once a building density of 640 buildings per 2.59 km2

is attained. Land areas comprised of building densi-
ties between 64 and 640 buildings per 2.59 km2 are
assumed to comprise relatively low-density residen-

tial and other development. Land areas comprised of
building densities of greater than 640 buildings per
square mile are assumed to comprise predominantly
high-density urban development (Figure 3).

Once the forestland area contributing to timber
production and habitat viability sub-models is delin-
eated, 1.0·103 m2 open vegetation patches (or build-
ing footprints) are created for each projected new
building. The building footprints are intended to re-
present the indirect impact of buildings on timber pro-
duction and habitat viability in terms of their direct
impacts on vegetative cover. The 1.0 103 m2 foot-
prints are consistent with the average vegetation patch
sizes found among a sampling of buildings in the
study area. The footprints also are roughly equivalent
in size to the basic simulation unit used in Coastal
Landscape Analysis and Modeling Study sub-models.
The specific locations of building footprints are se-
lected randomly according to the estimated building
density for each unit at each 10-year modeling time
interval.

Maps of projected future building densities for
western Oregon suggest significant expansion of low-
density and urban development (Figure 3). The pro-
portion of western Oregon land in low-density and
urban developed uses is projected to increase from
4.8% and 2.0% in 1995 to 5.6% and 3.7% in 2025,
and to 6.2% and 6.6% in 2055. Although the majority
of new buildings are projected in locations surround-
ing existing cities, greater numbers of buildings also
are indicated in forested areas that remain below the
low-density development threshold of 64 buildings
per square mile (8 per 80-acre (32-ha)). These pro-
jections suggest greater numbers of people living in
closer proximity to forestlands in the Coastal Land-
scape Analysis and Modeling Study region in the fu-
ture.

The projected building densities are based on pop-
ulation values that are outside the range of data used
to estimate future building density distributions. To
evaluate the reasonableness of the building density
projections, we compared the amount of low-density
and urban development per capita indicated by our
spatial projections with per capita land use rates in-
dicated by the 1997 National Resources Inventory
data for Oregon (NRCS (Natural Resources Conser-
vation Service) 1999). Our projections suggest that
low-density and urban development will increase an
average of 2.7·103 m2 per new resident from 1995 to
2055. This rate is reasonably close to the average
2.1·103 m2 increase in �developed land� per new resi-
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dent between 1982 to 1997 in Oregon and below the
national average of 0.82 acres per new resident, based
on National Resources Inventory data (Kline 2000).

Summary

Our empirical model of building density change is an
improvement over the discrete land use modeling ap-
proach initially used by the Coastal Landscape Anal-
ysis and Modeling Study. The new model acknowl-
edges that human habitation of forestland is not
defined by discrete boundaries, but rather occurs
along a continuum. The model describes a range of
human habitation impacts that potentially can be in-
corporated into other sub-models describing socio-
economic and ecological conditions. Because the
model is not limited to discrete delineations of forest
and urban land, it potentially can be applied to a
broader range of research issues. Also, the estimated
negative binomial model provides projected values

that are estimated changes in building densities,
which are easier to interpret than projected probabili-
ties provided by initial probit models based on
changes among discrete land use categories.

In this particular application, the specific needs of
the Coastal Landscape Analysis and Modeling Study
called for the aggregation of projected building den-
sities above 64 buildings per 2.59 km2 into discrete
land use categories of low-density (64 to 640 build-
ings per 2.59 km2) and urban development (> 640
buildings per 2.59 km2). Sub-models describing tim-
ber production activity and habitat viability were un-
able to use more detailed information regarding hu-
man habitation. However, modeling building
densities, rather than discrete land use categories, en-
abled study researchers to select appropriate criteria
with which to define these categories, rather than hav-
ing to accept land use categories established by na-
tional land inventories or other data sources. The po-
tential to incorporate the impacts of relatively low-
density human habitation levels into landscape-level

Figure 3. Projected building density classes in Western Oregon.
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ecological models could motivate greater interest in
multidisciplinary examinations of human interactions
with landscape-level ecological and socioeconomic
processes. The recent and increasing migration of hu-
mans to forested landscapes (noted by Egan and Lu-
loff (2000) among others) likely will increase the
need for such research in the future.

The results of model validation procedures suggest
that the likelihood of correctly projecting ending
building density classes using the model improves
with the increasing coarseness of ending building
density classes desired. To some extent, the reason for
this result is intuitively obvious, and stems from the
error inherent in estimation of a statistical model of
building density change. The resulting model will be
better at projecting close to the actual ending build-
ing density class than it will be at projecting the ac-
tual ending building density class exactly. However,
the validation result also illustrates the tradeoff inher-
ent in choosing between the precision and the accu-
racy with which building density classes are pro-
jected.

Our particular modeling approach was made pos-
sible by the ready availability of building density
data, which is not available from existing national
land inventories or other common sources. Although
obtaining such data through photo-interpretation of
aerial photography or satellite imagery is possible, it
can be an expensive process and may not be feasible
in certain applications. When limitations exist, re-
searchers are advised to consider the tradeoffs asso-
ciated with different types of data and models when
evaluating the necessity for the additional detail con-
tained in building density or similar data over more
readily available discrete land use data. Among the
many important factors to consider are the potential
sensitivity of the socioeconomic or ecological pro-
cesses under study to ranges of human habitation and
the specific purposes of land use modeling in the
overall landscape model context.
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