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ABSTRACT
Economists and ecologists are often asked to collab-
orate on landscape-level analyses designed to
jointly assess economic and ecological conditions
resulting from environmental policy scenarios. This
trend toward multidisciplinary projects, coupled
with the growing use of geographic information
systems, has led to the development of spatially
explicit models that can be used to examine and
project land-use change. Although spatial land-use
models are still evolving, most published efforts
have modeled the conversion of nonurban land to
urban uses as a function of explanatory variables
based on population density and the spatial prox-
imity of land to roads, markets, and population
centers. In this paper, we use a gravity model to
describe the urbanization potential of forest and
agricultural land as a combination of population
and proximity. We develop an empirical model that

describes the probability that forests and agricul-
tural land in western Oregon and western Wash-
ington were transformed to residential, commer-
cial, or industrial uses over a 30-year period as a
function of urbanization potential, other socioeco-
nomic factors, and geographic and physical land
characteristics. Land-use data were provided by the
USDA Forest Service’s Forest Inventory and Anal-
ysis program. We use this empirical model to gen-
erate geographic information system maps depict-
ing the probability of future land-use change that
can be integrated with landscape-level ecological
models developed for western Oregon’s Coast
Range.

Key words: land-use change; urbanization; spatial
models; ecological economics.

INTRODUCTION

Economists and ecologists are often asked to collab-
orate on landscape-level analyses designed to
jointly assess economic and ecological conditions
resulting from environmental policy scenarios. This
trend toward multidisciplinary efforts, coupled with
the growing use of geographic information systems,
has led to the development of spatially explicit
models that can be used to examine and project the
rate and location of land-use change. One class of

models generally relies on discrete (point) land-use
data derived from satellite imagery, aerial photo-
graphs, or systematic land inventories combined
with other spatially referenced data that describe
socioeconomic factors and geographic and physical
land characteristics believed to affect land use.
These data are used to estimate the probability of a
particular land use or land-use change occurring at
a given location and particular point in time using
logit or probit regression models. These kinds of
probabilistic land-use models have been used to
examine owner influences on land-use change
(Turner and others 1996; Wear and others 1996),
land-use impacts on water quality (Bockstael
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1996), causes of deforestation (Chomitz and Gray
1996; Nelson and Hellerstein 1997), urbanization of
farmland (Bradshaw and Muller 1998), forest suc-
cession (Helmer 2000), and land-use impacts on
timber and ecological resources (Munn and Evans
1998; Wear and Bolstad 1998). These models differ
from more deterministic ones that simulate land-
use change based on a series of decision rules (see,
for example, Wilkie and Finn 1988; Southworth
and others 1991; Dale and others 1993, 1994; Gil-
ruth and others 1995).

Although spatial data describing geographic and
physical land characteristics hypothesized to affect
land use generally are available, obtaining spatial
socioeconomic data can be a challenge. Geographic
and physical land characteristics, such as slope or
soil quality, tend to be temporally static and can
usually be described using a single geographic in-
formation system map. Socioeconomic factors, such
as the spatial distribution of population across a
landscape, are often temporally dynamic. An ade-
quate description of socioeconomic factors may re-
quire data across a number of time periods, and
these data may not be readily available in digitized
form. Inadequate temporal breadth in socioeco-
nomic data can be a problem because socioeco-
nomic variables, such as population, tend to be
among the most important drivers of land-use
change and are necessary to make reliable projec-
tions of future land use. Changing socioeconomic
conditions tend to induce land-use change, whereas
geographic and physical land characteristics tend to
constrain the choice set of land-use alternatives.

These traits are particularly true of socioeconomic
factors that motivate urbanization. Population den-
sity is often a key explanatory variable included in
land-use change models describing urbanization
(see, for example, Bradshaw and Muller 1998;
Munn and Evans 1998; Wear and Bolstad 1998). Its
inclusion in estimated empirical models enables an-
alysts to project future land-use change by substi-
tuting projected density values for actual popula-
tion or housing density values. However, although
population density data can be obtained at fairly
fine spatial scales, such as the census tract level, it is
often impossible to obtain these data in digitized
form for all but the most recent years. This problem
effectively restricts land-use change analysis to nar-
row or very recent time spans.

Furthermore, although population density can
describe population pressure at a given location, it
may not adequately account for the spatial influ-
ence of cities as commuting destinations for work
and other economic activities. Some studies have
included variables describing the distance of land to

major cities (Bockstael 1996; Bradshaw and Muller
1998; Munn and Evans 1998), but selecting which
cities to include in the analysis can be a somewhat
arbitrary process and may not account for the com-
bined influence of multiple cities within urbanizing
corridors. An alternative to the use of individual
population density and city–distance variables is
the use of gravity models or indexes describing
urbanization potential as a function of the com-
bined influence of population and proximity.

The objective of this paper was to develop and
test a gravity index describing urbanization poten-
tial as a predictor of forest and agricultural land
conversion. We use geographically referenced plot-
level data depicting historical land use to develop an
empirical model of land-use change in western Or-
egon and western Washington (Figure 1). Land-use
data are from the USDA Forest Service’s Forest
Inventory and Analysis program. The model de-
scribes the probability that forest and agriculture
plots have been converted to urban uses since 1961
as a function of historical gravity indexes computed
for each plot, as well as plot-level geographic and
physical land characteristics and other factors. The
empirical model is used to generate geographic in-
formation system coverages depicting projected
probabilities of future land-use change at the pixel
level. The land-use change probabilities can be in-
tegrated with landscape-level ecological models de-
veloped for western Oregon’s Coast Range to eval-
uate potential risks associated with future
urbanization throughout the study region.

The Study Region

The Coastal Landscape Analysis and Modeling
Study (Bettinger and others 2000) is a multidisci-

Figure 1. General research procedure.
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plinary research effort designed to analyze the ag-
gregate ecological, economic, and social conse-
quences of forest policies in western Oregon’s Coast
Range mountains. The study region borders the
Pacific Ocean on the west and the Willamette Val-
ley on the east (Figure 2). Current forest policies in
the region attempt to achieve a particular mix of
forest goods and services by spatially distributing
different forest practices over watersheds or land-
scapes and across multiple ownerships. A particular
policy concern in recent years has been ensuring
sufficient habitat for spotted owls (Strix occidentalis
caurina) and coho salmon (Oncorhynchus kisutch).
The project is intended to provide quantitative anal-
yses testing the assumptions of current forest poli-
cies to determine if projected future outcomes are
consistent with policy goals. Specific objectives in-
clude (a) characterizing current spatial patterns and
historical dynamics of ecological, economic, and so-
cial components of the Coast Range ecosystem; (b)
developing ecological, economic, and social models
to describe these components and the linkages
among each; and (c) projecting the aggregate im-
pacts of current forest policies in the Coast Range
on ecosystem conditions and economic outputs
over time.

One economic component that is expected to
have a significant effect on projected forest policy
outcomes in the Coast Range is land-use change
resulting from the conversion of forest land to ur-
ban uses. Currently, 70% of Oregon’s 3.4 million
people live in the Willamette Valley, and the val-
ley’s population is expected to grow by 1.3 million
new residents in the next 40 years (McGinnis and
others 1996; Franzen and Hunsberger 1998). Pro-
jected population growth has led to increasing in-

terest in examining where land-use changes are
most likely to affect forests and the goods and ser-
vices they provide throughout the region. Urban-
ization may cause the forestland base to become
more fragmented, adversely affecting ecosystem
conditions and economic outputs. The ecological
consequences could include the direct loss of habi-
tat or diminished habitat quality. The economic
consequences could include less intensive forest
management for commercial timber production
(see, for example, Wear and others 1999), resulting
in reduced economic output. The goal of land-use
modeling in the Coastal Landscape Analysis and
Modeling Study is to place current and future forest
policies in an appropriate socioeconomic context by
accounting for the pace and location of future land-
use change.

Conceptual and Empirical Framework

The conceptual foundations of existing spatial land-
use change models are based on several earlier non-
spatial studies. Nonspatial studies have applied vari-
ations of the area-base approach to describe the
proportion of land in forest, agriculture, and urban
use categories within well-defined geographic areas
(usually counties), as a function of socioeconomic
variables and land characteristics aggregated at a
geographic level (White and Fleming 1980; Alig
1986; Alig and Healy 1987; Alig and others 1988;
Lichtenberg 1989; Plantinga and others 1990, 1997;
Stavins and Jaffe 1990; Parks and Murray 1994;
Plantinga 1996; Cropper and others 1999; Hardie
and Parks 1997). Both spatial and nonspatial em-
pirical models describing the conversion of nonur-
ban land to urban uses have been based on the
assumption that landowners choose to convert for-
est or agricultural land to urban uses when the
present value of future net returns generated by
land in urban uses rises above the present value of
future net returns generated by the land remaining
in nonurban uses (Bockstael 1996).

We assume that a landowner will convert a non-
urban land parcel i to an urban use when the
present value of the future net returns generated by
the parcel in an urban use less conversion costs ViU

equals or exceeds the present value of the future
net returns generated by the parcel remaining in a
nonurban use ViF as

ViU $ ViF (1)

The subscript U denotes a developed use; the sub-
script F denotes an existing nonurban forest or
agricultural use. Letting v represent the observed
portion of V and m represent the unobservable ran-

Figure 2. Coastal landscape analysis and modeling study
region.
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dom portion, we express the probability that parcel
i that is observed in a nonurban land use at t–1 will
be observed in an urban land use at time t as

P~develop! 5 P~viUt 1 miUt $ viFt 1 miFt!

5 P~viUt – viFt $ miFt – miUt! (2)

Empirically estimating the model in Eq. (2) requires
us to specify appropriate explanatory variables de-
scribing viUt–viFt and to choose a distribution for the
error term mF–mU (Bockstael 1996).

The empirical modeling techniques available for
examining land-use change depend to some degree
on the types of historical land-use data that are
available for analysis and the manner in which the
model will be used to project land-use change. Non-
spatial area-base land-use models generally are es-
timated using variations of multiple regression,
such as seemingly unrelated regression, to estimate
the proportion of land in different uses within
counties. The models are used to project future
land-use shares within counties, as well as aggre-
gate land-use areas for a study region. Their reli-
ance on county-level data precludes projecting land
use on a spatial scale finer than a county. County-
level aggregation often is unacceptable to landscape
ecologists, who generally want land-use projections
provided on a spatial scale more relevant to the
ecological systems under study.

Spatial land-use models are developed to project
the rate and location of land-use change, on a pixel-
by-pixel basis, by exploiting the additional informa-
tion contained in spatially referenced land-use data
increasingly available from geographic information
systems. These models generally rely on discrete
(point) land-use data sampled from satellite imag-
ery or aerial photographs and combined with other
spatially referenced data describing socioeconomic
factors and geographic and physical land character-
istics. Spatial land-use data often consist of discrete
observations of land use on sample plots at several
points in time. These data are used to estimate logit
or probit models describing the probability of a
land-use change occurring at a given point in time.

A structural model describing the probability of a
land-use change yi* occurring can be written as

yi* 5 b9xi 1 εi (3)

where x is a vector of explanatory variables describ-
ing the conceptual parameters viUt–viFt included in
(2), ε is an error term accounting for mF–mU, b is a
vector of estimated coefficients, and i 5 1, . . . , n.
In practice, yi* is unobservable. What is observed is
a vector of dummy variables yi defined by

yi 5 1 if yi* . 0, 0 otherwise (4)

In this case, yi equals 1 for plots i observed in a
forest or agricultural use at one point in time and in
an urban use at a later point in time; it equals 0 for
plots observed in a forest or agricultural use at both
the initial and later point in time.

If we assume that the error term ε in Eq. (3) is
normally distributed, the dummy variable yi can be
used to estimate a probit model describing the like-
lihood that sample plots were converted from a
forest or agricultural use to an urban use from one
occasion to the next. This is represented as

P~ yi 5 1! 5 F~b9xi! (5)

where F is the standard normal distribution
(Greene 1997). If we assume that the error term ε is
logistically distributed, we can estimate a logit
model as

P~ yi 5 1! 5
eb9xi

11eb9xi
(6)

where e is the base of the natural logarithm. Ini-
tially, we have no definitive reason to prefer one
estimation procedure over the other.

Often, spatial land-use data contain multiple ob-
servations of sample plots at several different points
in time. In such cases, the dependent variable yi can
be constructed from multiple observations of begin-
ning and ending land use on individual plots at
several occasions. For example, if land-use obser-
vations exist for a plot at four subsequent occasions,
we have three observations of beginning and end-
ing land use for that plot. If land-use observations
exist for a plot at two subsequent occasions, we
have only one observation of beginning and ending
land use for that plot. Because spatial land-use data
vary cross-sectionally through time, there is the
potential for correlation among the time-series ob-
servations for individual sample plots to deflate
standard errors and bias estimated coefficients. Two
ways to account for the time-series nature of dis-
crete land-use data in empirical estimation are
fixed-effects logit and random-effects probit
(Greene 1997).

Fixed-effects logit accounts for potential correla-
tion among observations across time by estimating
an individual intercept term for each cross-sectional
set of time-series observations. The method re-
quires at least two or more observations of land-use
change for each sample plot included in the data set
and so may not be feasible with data sets comprising
sample plots for which there are only single obser-
vations of land-use change. Alternatively, the ran-
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dom-effects probit model assumes that correlation
between successive disturbances for individual plots
can be reduced to a single constant r (Butler and
Moffitt 1982). The structural model in Eq. (3) is
modified to account for multiple time periods t as

yit* 5 b*9xit 1 εit (7)

where t 5 1, . . . T, εit 5 uit 1 vi, and b 5 b*/sε,
and

Var@uit 1 vi# 5 Var@εit# 5 su
2 1 sv

2 (8)

The correlation across time is estimated as

Corr@εit, εis# 5 r 5 sv
2/~sv

2 1 su
2! (9)

and can be evaluated using a simple t-test (Greene
1995, p. 427). Random-effects probit models can be
used to analyze data sets that include some sample
plots for which there are only single observations of
land-use change.

Land-Use Data

Few sources provide a comprehensive and consis-
tent depiction of historical land-use change except
where land-use changes have occurred in recent
decades. Tradeoffs often must be made among data
quality and consistency, temporal coverage, and
spatial detail. A growing trend in land-use modeling
is to rely on remotely sensed data, such as satellite
imagery or aerial photos, collected on one or two
occasions. These data can provide a fairly compre-
hensive depiction of different land uses and can be
merged with other spatially referenced data using
geographic information systems. Remotely sensed
data also can be effective for examining land-use
changes that have occurred during more recent
years for which such data is available. However,
remotely sensed data can present difficulties asso-
ciated with its cost and complexity, and its accuracy
may not be well established. Remotely sensed data
can also be limited in their temporal scope, which
can hinder model estimation if too little change in
land use is observed. They can also misrepresent
land-use trends if major changes occurred before
the observed time frame that are different from
those that occurred within the observed time frame.
In the Pacific Northwest, although some areas have
experienced relatively rapid growth rates in recent
years, forest and agricultural land conversions to
urban uses have occurred on a relatively small pro-
portion of the total land base (Zheng and Alig
1999). Also, it can be difficult to differentiate be-
tween certain land uses, such as recently harvested
forests and agricultural land.

A viable alternative to remotely sensed data is
data collected by the USDA Forest Service’s Forest
Inventory and Analysis (FIA) program. FIA con-
ducts periodic nationwide assessments of all non-
federal land in the United States, as authorized by
the Forest and Rangeland Renewable Resources Re-
search Act of 1974. FIA inventory data are gathered
using photo interpretation and ground truthing on
a systematic sampling of plots defined as pinpoints
on the ground. The data include land use and own-
ership characteristics of sample plots, among other
information. In this case, the advantage of FIA data
over remotely sensed data is that the FIA data are
available for western Oregon and western Wash-
ington for time spans of over 30 years. Detailed
discussion regarding FIA sampling and sampling
error can be found in USDA Forest Service reports
(Gedney and others 1986a, 1986b, 1987; MacLean
and others 1991a, 1991b, 1991c).

FIA inventories sample a fixed set of field plots
and provide data that can be used to examine actual
land-use changes on plots between successive in-
ventories. In western Oregon, data are available
from four inventories (1961–62, 1974–76, 1985–
86, and 1994–96) and provide three opportunities
to observe beginning and ending land use. In west-
ern Washington, data are available from three in-
ventories (1963–67, 1978–79, and 1988–89) and
provide two opportunities to observe beginning and
ending land use. There are 1466 field plots in west-
ern Oregon and 1405 field plots in western Wash-
ington. We restrict the data set to privately owned
forest and agriculture plots and omit those obser-
vations where beginning ownership was public or
where beginning land use was either urban, roads,
or miscellaneous uses. In western Oregon, this
yields 1241 observations of beginning and ending
land use for the 1961–62 and 1974–76 inventories,
1170 observations for the 1974–76 and 1985–86
inventories, and 1164 observations for the 1985–86
and 1994–96 inventories. In western Washington,
there are 1009 observations for the 1963–67 and
1978–79 inventories and 966 observations for
1978–79 and 1988–89. The complete data set in-
cludes 5550 observations of beginning and ending
land use over an average time step of 11 years
(Table 1).

We restrict our analysis to conversions of forest
and agricultural land to urban uses and ignore con-
versions between forest and agricultural uses. Al-
though historically in western Oregon and western
Washington land has moved between forest and
agricultural uses, these shifts are difficult to mea-
sure. For example, recently harvested forestland is
sometimes mistaken for rangeland and misclassified
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as agricultural. Rangeland possessing sparse tree
cover is sometimes misclassified as forest. Also, con-
versions between forest and agricultural land his-
torically have not had a significant effect on the
total area of land in either use relative to the con-
version of forest and agricultural land to urban uses.
FIA plot data for western Oregon show that net
conversions between forest and agricultural land
since 1961 sum to nine plots (42 2 33) converting
from agricultural to forest use, whereas 43 plots
(14 1 29) in forest and agricultural uses converted
to urban uses (Table 1). Net conversions between
forest and agricultural uses in western Washington
sum to nine plots (14–5) converting from forest to
agricultural use, whereas 33 plots (25 1 8) in forest
and agricultural uses converted to urban uses.
When data for western Oregon and western Wash-
ington are combined, net conversions between for-
est and agricultural uses sum to zero.

There are two ways to define urban conversions
using FIA data. One approach treats as converted
only those lands changing to an urban use and
excludes lands converting to roads. FIA classifies
town sites, clustered suburbs, and residential and
industrial buildings as urban, whereas constructed
roads, power lines, pipelines, and railroads are clas-
sified as roads. Much of the land classified by FIA as
roads consist of roads built by the forest industry to
access timberland. A second approach treats lands
changing to both roads and urban uses as con-
verted. Changes over time in FIA’s definition of
roads confound our choice. The 1961–62 western
Oregon inventory classifies forest roads less than
120 feet wide as forest, although later inventories
classify all forest roads—regardless of width—as

roads (MacLean 1990). Some conversions of forest
to roads from the 1961–62 to the 1974–76 inven-
tory may be due to this change in definition. In light
of these difficulties, we test two models—one as-
suming that land is developed when it is converted
either to urban uses or roads and another assuming
that land is developed when it is converted only to
urban uses.

A final estimation issue arises from our use of
spatial observations of land use. Spatial autocorre-
lation can result from omitted spatial variables that
influence the land-use decisions of landowners,
such as weather-related variables, and spatial be-
havioral relationships, such as common ownership
of neighboring sample plots. The first leads to inef-
ficient but asymptotically unbiased estimated coef-
ficients, whereas the second can lead to inefficient
and biased estimated coefficients (Nelson and
Hellerstein 1997). Although no standard statistical
protocols exist with which to treat spatial autocor-
relation in land-use analyses, some methods have
been devised and tested.

One remedy is to include spatial lag (or neigh-
borhood) variables based on the land use of neigh-
boring pixels. Another method is to purposefully
sample (Fortin and others 1989; Haining 1990) to
reduce autocorrelation arising from spatial behav-
ioral relationships. For example, if autocorrelation
is thought to arise from multiple plots falling under
common ownership, the entire set of plots can be
sampled at a spacing purposefully selected to reduce
the likelihood that any sample plots have a com-
mon owner. In our case, FIA data are based on a
systematic sampling of plots roughly spaced on a
5.5-km grid. We are unable to construct a spatial lag

Table 1. Number of FIA Plot Observations of Beginning and Ending Land Use from One Inventory to
the Next on Privately-owned Forest and Agricultural Land in Western Oregon and Western Washingtona

Initial Land Use

Ending Land Use

Forest Agriculture Urbanb Roadsc Miscellaneousd

Western Oregon
Forest 2488 33 14 30 3
Agriculture 42 928 29 6 2

Western Washington
Forest 1581 14 25 25 2
Agriculture 5 314 8 1 0

aReports cumulative number of FIA plot observations of beginning and ending land use between the inventories of 1961–62, 1974–76, 1985–86, and 1994–96 in western
Oregon and 1963–67, 1978–79, and 1988–89 in western Washington. Total number of observations is 5550. Data set does not include observations of public land that
converted to private ownership and private land that converted to public ownership between inventories.
bIncludes town sites, clustered suburbs, residential and industrial buildings
cIncludes constructed roads, power lines, pipelines, and railroads
dIncludes barren rock, sand, glaciers, marsh, lakes, streams, and reservoirs
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variable because pixel-level information regarding
land use between sample plots is unavailable. How-
ever, because a 5.5-km average spacing between
plots implies that each plot represents, on average,
7400 acres and that figure exceeds the land hold-
ings of most private landowners in the study region,
we assume that the likelihood that plots fall under
the same ownership is minimal.

Gravity Model of Urbanization Potential

Conceptually, the value of land in urban uses has
been viewed as a function of the spatial proximity
to city centers (Mills 1980; Miyao 1981; Fujita
1982; Wheaton 1982; Capozza and Helsley 1989).
Although spatial proximity does influence the costs
associated with transporting forest and agricultural
commodities to market, modern society associates
spatial proximity more with maximizing the differ-
ence between commuting costs and quality-of-life
factors such as housing and neighborhood ameni-
ties. Empirical specifications generally have de-
scribed urban values using population density (Alig
1986; Alig and Healy 1987; Alig and others 1988;
Plantinga and others 1990; Parks and Murray 1994;
Hardie and Parks 1997; Cropper and others 1999;
Kline and Alig 1999) or the proximity of land to
cities likely to influence the conversion of nonur-
ban land to urban uses (Bockstael 1996; Plantinga
and others 1990; Munn and Evans 1998). However,
data with which to compute population density
variables rarely are disaggregated enough geo-
graphically to describe different rates of population
growth in different locales. Variables that simply
measure the proximity of land to select cities do not
necessarily account for the changing influence of
cities as their populations grow or decline. An al-
ternative way to describe population growth and its
spatial distribution is with a gravity model that in-
tegrates population and proximity into a single in-
dex of urbanization potential.

Gravity models were initially developed by Reilly
(1929) to describe the degree to which cities attract
retail trade from surrounding locations (see, for
example, Haynes and Fotheringham 1984). A com-
mon gravity index specification for a single city is

Gravity index 5
Population

~Distance!2 , (10)

which is directly proportional to the population of
the city and inversely proportional to the square of
the distance between the city and the location of
interest. Gravity indexes also have been used to
account for the combined influence of population
and proximity as economic forces affecting land-use

change. For example, Shi and others (1997) include
a gravity index as an explanatory variable in a
county-level hedonic model of farmland prices.
Their “urban influence potential variable” is con-
structed as the sum of the gravity indexes computed
for each of the three major cities nearest to each
county and is a statistically significant variable in
their empirical model of farmland value. Mathe-
matical specifications other than Eq. (10) are pos-
sible by varying the number of cities and the expo-
nents on population and distance, to adapt the gravity
index to the specific conditions or “social context”
of the geographic region under study (Haynes and
Fotheringham 1984, pp. 12–16).

We tested several gravity index specifications by
varying the exponents on population and distance,
and the number of cities included in the index
computation. The specification that consistently
performed best in terms of its t-value and log like-
lihood ratio tests is

Gravity indexi 5 O
k51

3 ~Populationk!
0.5

Distanceik
(11)

where k represents the three cities having the great-
est urban influence potential on each plot as mea-
sured by the individual gravity index computed for
each city. Although our inclusion of only the three
most influential cities is somewhat arbitrary, the
specification seems to adequately describe urban-
ization patterns in the Pacific Northwest. To reduce
the total potential number of cities included in the
analysis, we include only those 95 cities in the
Pacific Northwest–westside region that have a pop-
ulation of more than 5000 persons (US Bureau of
Census 1992). Although this cutoff does not cap-
ture the influence of every single city, it captures
the effect of those most likely to influence land-use
conversions. We compute Distance as the Euclidian
distance between sample plots and each city center
included in the analysis, based on the universal
transverse mercator coordinates of sample plots and
cities. Our use of a gravity index as an explanatory
variable in an empirical land-use model assumes
that land-use change in western Oregon and west-
ern Washington is at least partially dependent on
the proximity of land to existing cities and the sizes
of those cities.

Model Estimation

Probit and random-effects probit models are speci-
fied describing the likelihood that FIA plots were
converted from forest or agricultural uses to an
urban use from one inventory occasion to the next,
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as a function of explanatory variables. The explan-
atory variables x include plot- and county-level
proxy variables describing the value of land in ur-
ban (GRAVITY INDEX), forest (FOREST RATIO),
and agricultural (FARM RATIO) uses (Table 2). We
expect GRAVITY INDEX to have a positive influ-
ence on the conversion of nonurban land to urban
uses, because we suspect that urbanization is moti-
vated primarily by the combined influence of pop-
ulation and proximity. We expect FOREST RATIO
and FARM RATIO to have a negative influence on
land conversion, because we expect that lands pos-
sessing greater nonurban value are less likely to be
converted to urban uses. County-level household
income (INCOME) is also included in the model
and is expected to have a positive influence on the
conversion of land to urban uses. Higher household
incomes tend to be correlated with greater urban
land use.

Additional plot-level variables describing land-
ownership by industrial (FOREST INDUSTRY) and
nonindustrial private (NIPF OWNER) interests are

included to test for differences across owner groups.
Geographic and topographic characteristics
(COASTAL LOCATION, INTERSTATE 5, and ELE-
VATION) may influence the value of land in differ-
ent uses. For example, location near the Pacific
Ocean or closer to Interstate 5 may increase the
potential value of land in residential or other urban
uses because of superior views or ready access to
highways. Land located at higher elevations may
show reduced urban potential due to poor access or
steep slopes. Although a variable specifically de-
scribing the slope of sample plots is desirable, it is
not included because FIA inventories do not record
the slope of nonforested plots. The variable ORE-
GON provides a test of differences between urban-
ization rates in western Oregon and western Wash-
ington.

The total number of observations of 5550 con-
tained in the full data set is reduced to 4619 by
omitting 931 observations for sample plots having a
slope of greater than 40%. Current land-use regu-
lations prohibit building on land comprising a slope

Table 2. Descriptions of Explanatory Variables Tested in the Probit Models

Variable Description

GRAVITY INDEX Index computed following Eq. (4) and equal to the average of the three largest values
of individual city indexes each computed as the ratio of the square root of a city’s
population (US Bureau of Census 1992) divided by a city’s proximity to the plot
measured as the shortest straight line (Euclidian) distance. The 95 largest cities
located in western Oregon and western Washington, all having a population greater
than 5000 in 1990, are included. Population for FIA inventory years is derived by
interpolating between census years.

FOREST RATIO For forest plots, 5-year moving average of sold stumpage price per 1000 board feet
(1992 dollars), Pacific Northwest west-side region (Sohngen and Haynes 1994),
weighted by the ratio of plot site index to average site index for all plots, divided by
5-year moving average of logging and hauling costs for saw and veneer logs per
1000 board feet (1992 dollars), Pacific Northwest, west-side region (Adams and
others 1988), weighted by the ratio of county average slope to regional average
slope. Variable equals zero for agriculture plots.

FARM RATIO For agriculture plots, 5-year moving average of annual value of agricultural products
sold per acre (1992 dollars), by county (US Bureau of Census 1994), divided by 5-
year moving average of annual production expenses per acre (1992 dollars) by
county. Value and cost figures for noncensus years found by interpolation between
census years. Variable equals zero for forest plots.

INCOME Five-year moving average of median annual household income ($1000s) by county
(US Bureau of Census 1992), adjusted to 1992 dollars. Income for noncensus years
derived by interpolating between census years.

FOREST INDUSTRY Variable equals 1 if plot is forest industry or corporate-owned; 0 otherwise.
NIPF OWNER Variable equals 1 if plot is nonindustrial privately owned; 0 otherwise.
COASTAL LOCATION Variable equals 1 if plot is located within 4 km of the Pacific Ocean; 0 otherwise.
INTERSTATE 5 Variable equals the shortest, straight-line distance (100s of kilometers) between plot

and Interstate 5.
ELEVATION Variable equals plot elevation (1000s of meters).
OREGON Variable equals 1 if plot is located in Oregon; 0 otherwise.
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of greater than 40% (Oregon Revised Statutes
1997). In fact, the complete set of 5550 observa-
tions includes no occurrence of a sample plot hav-
ing a slope greater than 40% and converting to an
urban use.

The estimated probit models are highly signifi-
cant (P , 0.01) with chi-square values of 155.88
and 167.21, each with nine degrees of freedom
(Tables 3 and 4). The signs of all explanatory vari-
ables are consistent with expectations in both mod-
els. Estimation using random effects probit yields a
similar set of estimated coefficient values (Tables 3
and 4) and r values of 0.404 and 0.386, with t-
statistics of 1.02 (a . 0.30) and 0.68 (a . 0.49). Log
likelihood ratio tests of the r coefficient yielded x2

values of 3.31 (P , 0.10) and 1.92 (P , 0.20),
suggesting that random effects probit estimation is
marginally superior. As in the probit models, the

signs of all of the explanatory variables are consis-
tent with our expectations.

The statistical significance of the estimated coef-
ficients for individual variables is generally superior
in the probit and random-effects probit models that
exclude roads as an urban use (Table 4). Because
most observations of road building involve the con-
struction of forest roads rather than new highways
and other roads associated with new urban uses,
the empirical models that exclude roads as a devel-
oped use are probably more consistent with our
conceptual model of urbanization. It would seem
reasonable as well to assume that the rate at which
forest roads are constructed in the future will be
substantially less than the rate at which they were
constructed during the past 30 years—the time pe-
riod described by the present data. For these rea-
sons, we focus our discussion on the empirical re-

Table 3. Estimated Coefficients of Probit and Random-Effects Probit Models of Probability that Private
Land Is Converted to Urban Uses and Roads in Western Oregon and Western Washington

Variable

Probit Random-Effects Probit

Estimated Coefficient Marginal Effect Estimated Coefficient Marginal Effect

Intercept 21.939c 20.0783 22.464c 20.0234
(25.58) (23.75)

GRAVITY INDEX 0.021c 0.0009 0.033c 0.0003
(5.53) (3.31)

FOREST RATIO 20.587c 20.0237 20.780c 20.0074
(28.40) (24.65)

FARM RATIO 20.654c 20.0264 20.886c 20.0084
(27.00) (23.94)

INCOME 0.025b 0.0010 0.031b 0.0003
(2.36) (2.30)

NIPF-OWNED 0.105 0.0042 0.138 0.0013
(0.95) (0.88)

COASTAL LOCATION 0.313b 0.0126 0.412a 0.0039
(2.28) (1.84)

INTERSTATE 5 20.108 20.0044 20.132 20.0012
(20.58) (20.55)

ELEVATION 20.181 20.0073 20.217 20.0020
(20.92) (20.78)

OREGON 20.254c 20.0103 20.314b 20.0030
(22.84) (22.57)

Rho (r) — — 0.404 —
(1.02)

Summary Statistics: n 5 4619 n 5 4619
Log likelihood 5 2538.97 Log likelihood 5 2537.31
x2 5 155.88, df 5 9, P , 0.001 x2 5 3.31, df 5 1, P , 0.07
Pseudo R2 5 0.38 Pseudo R2 5 0.52

a,b and c indicate that the probability of the t-statistic (in parentheses) for each coefficient exceeding the critical t-value is greater than 90%, 95%, and 99%.
Total number of observations of 5550 (Table 1) is reduced to 4619 by omitting 931 observations for plots having a slope of greater than 40%.
Pseudo R2 values computed following Zavoina and McElvey (1975)
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sults produced by the models that exclude roads as
an urban use (Table 4).

Estimated coefficients for the variable GRAVITY
INDEX describing urban influence potential are
positive, statistically significant (P , 0.05), and
consistent with a higher likelihood of urban con-
version on land located closer to population centers
and increasing with the size of those population
centers. Estimated coefficients for the variables
FOREST RATIO and FARM RATIO are all negative,
statistically significant (P , 0.01), and consistent
with a lower likelihood of development on land
that has substantial forest or agricultural value. Es-
timated coefficients for INCOME are positive (P ,
0.05) and suggest a greater likelihood of urban
conversion on land located in counties with a
higher household income.

The variable FOREST INDUSTRY is omitted from
both models to avoid perfect colinearity among the

ownership variables. Estimated coefficients for NIPF
OWNER are positive and suggest that land owned
by nonindustrial private owners is more likely to be
converted to urban uses than forest industry land.
Estimated coefficients for COASTAL LOCATION are
positive and consistent with a greater likelihood of
urban conversion on lands located within the Pa-
cific coastal strip. Estimated coefficients for INTER-
STATE 5 are negative and consistent with an ex-
pected increase in the likelihood of urban
conversion as distance to Interstate 5 decreases.
Estimated coefficients for ELEVATION are negative
and suggest a diminishing likelihood of urban con-
version as elevation increases. Because elevation
and slope often are correlated, negative ELEVA-
TION coefficients could indicate a lower likelihood
of urban conversion occurring on sample plots with
steeper slopes.

Estimated coefficients for OREGON are nega-

Table 4. Estimated Coefficients of Probit and Random-Effects Probit Models of Probability that Private
Land Is Converted to Urban Uses in Western Oregon and Western Washington

Variable

Probit Random-Effects Probit

Estimated Coefficient Marginal Effect Estimated Coefficient Marginal Effect

Intercept 22.735c 20.0287 23.346c 20.0037
(25.70) (23.29)

GRAVITY INDEX 0.023c 0.0002 0.035b 0.0000
(5.52) (2.39)

FOREST RATIO 20.620c 20.0065 20.802c 20.0009
(26.37) (23.30)

FARM RATIO 20.614c 20.0064 20.818c 20.0009
(25.35) (22.78)

INCOME 0.039c 0.0004 0.045b 0.0000
(2.88) (2.48)

NIPF-OWNED 0.396b 0.0042 0.526 0.0006
(2.08) (1.62)

COASTAL LOCATION 0.318a 0.0033 0.394 0.0004
(1.74) (1.48)

INTERSTATE 5 20.406 20.0043 20.503 20.0006
(21.44) (21.35)

ELEVATION 21.419c 20.0149 21.872b 20.0021
(23.12) (22.04)

OREGON (20.124 20.0013 20.157 20.0002
(21.02) (20.89)

Rho (r) — — 0.386 —
(0.68)

Summary Statistics: n 5 4619 n 5 4619
Log likelihood 5 23.03.91 Log likelihood 5 23.02.95
x2 5 167.21, df 5 9, P , 0.01 x2 5 1.92, df 5 1, P , 0.17
Pseudo R2 5 0.48 Pseudo R2 5 0.62

The a,b and c indicate that the probability of the t-statistic (in parentheses) for each coefficient exceeding the critical t-value is greater than 90%, 95%, and 99%.
Total number of observations of 5550 (Table 1) is reduced to 4619 by omitting 931 observations for plots having a slope of greater than 40%.
Pseudo R2 values computed following Zavoina and McElvey (1975)
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tive but not statistically significant (P . 0.30),
suggesting no discernable statistical difference be-
tween urbanization rates in western Oregon and
western Washington as defined in the empirical
model (Table 4). The empirical model does not
explicitly account for land-use laws and policies
that likely effect the rate and pattern of land-use
change. Oregon’s land-use planning program, in
particular, has served as a national model in land-
use planning and growth control (Abbott and
others 1994). It could therefore be expected to
account for measurable differences in the rate
and pattern of urbanization occurring in western
Oregon and western Washington. However, pre-
vious research suggests that Oregon’s land-use
planning program has had little measurable effect
on the land-use change described by FIA data
(Kline and Alig 1999). Explanatory variables ac-
counting for land-use zoning adopted under Or-
egon’s land-use planning program were initially
included in the current analysis, but estimated
coefficients for these variables were consistently
found to be statistically insignificant.

Validating the forecasting performance of an es-
timated empirical model is useful in determining if
projected outcomes are reasonable. A feasible
method of model validation is to reserve a portion
of the data sample from empirical analysis for val-
idation purposes. Projected outcomes resulting
from the estimated empirical model then can be
compared to actual outcomes described by the re-
served data sample (see, for example, Wear and
Bolstad 1998). For this validation method, suffi-
cient data must exist to both estimate and validate
the model. Although the complete data sample in-
cludes 4619 observations, only a small proportion
of these comprise conversions of forest or agricul-
tural land to urban uses. As a result, we do not have
a sufficient number of observations of land-use
change with which to both estimate and validate
the empirical model. The statistical significance of
the empirical models and many of the explanatory
variable coefficients do suggest a good fit with the
available data.

Projecting Future Land Use

The estimated model coefficients, when combined
with projected values of population and other ex-
planatory variables, are used to project the likeli-
hood of future land-use change at 11-year intervals
throughout the Coastal Landscape Analysis and
Modeling Study region. The 11-year interval is de-
termined by the average 11-year interval between
FIA inventories. We use the gravity model to com-
pute a set of pixel-level gravity indexes for future

time intervals using projected population growth
for cities in the region. Population projections for all
95 cities used in the analysis are based on county-
level projected population growth through 2010
(McGinnis and others 1996, 1997) and on state-
level projected population growth for 2010 to 2050
(US Bureau of Census 1992).

The complete set of gravity indexes describes the
projected spatial distribution of urbanization poten-
tial throughout the study region at five future
points in time from our base year of 1996 to 2051.
Figure 3 compares 1996 land use to the gravity
index computed for 2007. The 1996 land-use base
map was developed for the Coastal Landscape Anal-
ysis and Modeling Study (Bettinger and others
2000) by combining analysis of remotely sensed
forest and vegetation data with existing city limit
boundaries to describe forest, agriculture, and ur-
ban land-use categories. Significant effort has been
taken to ensure that the resulting base map land-
use categories are as consistent as possible with FIA
land-uses categories. Still, some differences may ex-
ist between the land-use data with which the model
was estimated and data to which the model projec-
tions are applied. The gravity index projected for
2007 suggests that the urbanization potential of
forest and agricultural land will be greatest near the
more populated cities of the Willamette Valley,
such as Portland, Salem, and Eugene, and within
the corridors between these cities. The forested re-
gions of the Coastal Landscape Analysis and Mod-
eling study region tend to show less urbanization
potential due to generally poor physical access and
greater distance to the more populated cities.

Each set of gravity indexes can be combined with
projected values of other socioeconomic variables
included in the empirical model to compute pixel-
level probabilities representing the likelihood that
forest and agricultural land will be converted to
urban uses during each of the five 11-year intervals
occurring between our 1996 base year and 2051. In
this example, we assume that the socioeconomic
variables describing forestry (FOREST RATIO) and
agricultural values (FARM RATIO) and household
income (INCOME) remain constant. We assume
that urbanization potential (GRAVITY INDEX)
grows according to projected population growth, as
shown in Figure 3. We compute pixel-level conver-
sion probabilities for each 11-year interval using Eq.
(5) and the estimated random-effects probit coeffi-
cients for the model that excludes roads as a devel-
oped use (Table 4). Conversion probabilities for
in-years can be approximated by interpolation,
whereas conversion probabilities for years after
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2051 can be computed using additional population
projections.

We summarize the five sets of 11-year interval
conversion probabilities over time by combining
them into a single set of probabilities representing
the likelihood that land in forest and agricultural
uses during the 1996 base year will be converted to
urban uses by 2051. The 1996 to 2051 conversion
probabilities are computed as

Pi
1996–2051 5 1 2 P

i21

5

~1 2 Pi! (12)

where Pi are the conversion probabilities computed
at each of the five 11-year intervals using Eq. (4). In
this example, the 1996 to 2051 conversion proba-
bilities are combined with a 1996 base year land-
use map to depict existing urban land and the prob-
able distribution of future urban land for the
portion of the Coastal Landscape Analysis and Mod-
eling Study region surrounding Portland and Sa-
lem, Oregon (Figure 4). Projected conversion prob-
abilities are greatest in areas immediately
surrounding city boundaries and diminish with
greater distance from each city. Conversion proba-
bilities diminish rapidly on forest lands located west
of the cities due to generally higher elevations and
poorer physical access.

Projected land-use conversion probabilities can
be used in landscape-level analyses to incorporate
information regarding the effects of urbanization on
the economic and ecological conditions of forest-
land. Computed conversion probabilities can be
used to identify economic or ecosystems most at
risk by anticipating where urbanization is most
likely to occur. Conversion probabilities can also be
converted into discrete units of urban conversion to
simulate future urbanization patterns. For example,
pixel-level probabilities can be combined with a
probabilistic algorithm to switch a proportion of
pixels from their existing nonurban uses to urban
uses over time. Alternatively, the pixel-level prob-
abilities can be combined with qualitative informa-
tion about zoning and other land-use regulations to
assign urban land-use conversions to specific loca-
tions (see, for example, Bradshaw and Muller
1998). Whichever method is used, analysts must
remember that simulations characterize the likeli-
hood of future land-use change rather than predict
actual change.

In this model, a key determinant of land-use
change is assumed to be the proximity of land to
existing cities of varying sizes. Although the inclu-
sion of other explanatory variables in the model
does allow for more remote land to be converted to
urban uses, model projections reflect the assump-

Figure 3. (A) 1996 land
use and (B) gravity index
of urbanization potential
for 2007.
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tion that land located closer to existing cities faces a
greater likelihood of conversion. This assumption
seems consistent with historical land-use change
observed in the study region of western Oregon and
western Washington during the time period under
analysis. In reality, land-use change may be caused
by a variety of factors with varying influences over
time and space. The process of modeling land-use
change must begin with a careful consideration of
all factors potentially influencing land-use change
in the region and time period under study.

SUMMARY AND CONCLUSIONS

The inclusion of explanatory variables based on
gravity models of urbanization provides one alter-
native to the use of population density data as a

way to represent the spatial influence of population
growth in spatial land-use models. The method as-
sumes that historical and future conversions of
nonurban land to urban uses are at least partly a
function of population growth within existing ur-
ban centers. Digitized data describing population
density often do not exist for all but the most recent
years, and population density may not adequately
account for the spatial influence of cities as drivers
of regional land-use change. Alternatively, gravity
models can be constructed by combining historical
population data for individual cities with the geo-
graphic coordinates of cities and may better account
for population pressure within spatial corridors be-
tween cities. Gravity models do, however, require
more empirical computation than population den-
sity variables.

Figure 4. Predicted likeli-
hood of urbanization.

Integrating Urbanization into Ecological Assessments 15



The relatively recent availability of spatial data
describing land use and other socioeconomic infor-
mation presents new opportunities for analyzing
and projecting the rate and location of land-use
change. These models have potential applications to
a wide range of economic and ecological policy
issues and could serve as important components of
landscape-level assessments (see, for example,
Quigley and others 1996). Population growth inev-
itably leads to continued land-use change. Spatial
land-use models enable researchers to account for
the effect of land-use change on future economic
and ecological forest outputs. For policy makers,
spatial land-use models help portray the socioeco-
nomic context in which future forest policies will
function.

In the near term, the development and use of
spatial land-use models may be limited by available
land-use and socioeconomic data and the expense
of processing spatial information. Satellite imagery
is often limited in its temporal scope and can be
limited as well in its spectral or spatial resolution.
Aerial photos may be expensive to digitize. Existing
national land-use inventories—such as the Forest
Inventory and Analysis Program discussed here or
the Natural Resource Inventory conducted by the
Natural Resource Conservation Service—are de-
signed to document specific forest and agricultural
resources and may not provide a comprehensive
depiction of all potential land uses in a given region.
Other socioeconomic data may be unavailable at
spatial scales relevant to many ecological assess-
ments. Tradeoffs must be considered when assess-
ing the costs and benefits associated with spatial
detail in multidisciplinary landscape-level analyses.

The incorporation of spatial socioeconomic infor-
mation into landscape-level ecological assessments
is a necessary first step toward a comprehensive
understanding of the social and political implica-
tions of protecting and enhancing ecological condi-
tions. If economists and ecologists are to collaborate
successfully on landscape-level analyses, they re-
quire at least a rudimentary mutual understanding
of the conceptual and empirical issues that guide
the separate economic and ecological components
of integrated analyses. Many of these issues are
rooted in the basic elements of the research process,
such as the quality and spatial scale of the available
data, the existence of theoretical models on which
to base empirical analyses, and expectations regard-
ing the rigor and timeliness of the individual com-
ponents of multidisciplinary projects. This paper has
presented one method that can be used to incorpo-
rate urbanization into landscape-level ecological as-
sessments. The intent has been to highlight some of

the conceptual and empirical issues involved in the
development of empirical land-use change models
based on socioeconomic information.
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