Kelly Burnett¹ Gordon Reeves¹ Dan Miller²

Sharon Clarke³ Kelly Christiansen¹ Ken Vance-Borland³

PNW Research Station¹, Earth Systems Institute² & Oregon State University³

Landscape Conditions

Freshwater Habitat

> Salmon & Trout

Approach

1. Develop & apply watershed condition metrics

2. Model relationships among salmonids, their freshwater habitats, and landscape features

Approach

- 1. Develop & apply watershed condition metrics
 - Intrinsic potential
 - Management influences on streams

2. Model relationships among salmonids, their freshwater habitats, and landscape features

Intrinsic Potential

- Describes capacity to provide high quality habitat
- Attributes are static over long time frames
- Values of attributes are species specific

High Gradient, Constrained Reaches

Low Gradient, Unconstrained Reaches

Intrinsic Potential to Provide High **Quality Habitat for Steelhead**

Tillamook Watershed

Intrinsic Potential to Provide High Quality Habitat for Coho Salmon

Tillamook Watershed

Nestucca Watershed

High Intrinsic Potential by Land Ownership Tillamook and Nestucca Watersheds

High Intrinsic Potential by Current Land Use Tillamook and Nestucca Watersheds

Management Influences

- Describe possible effects of landuse on streams
- Attributes dynamic over short time frames
- Most attributes are based on forest cover classes

- Generated with 10 m DEMs using established guidelines
- Consistent drainage areas
- Match tributary junctions
- Attributed with basin type
- Upstream HUs identified

Management Influences

Modeled Stream Network

- Derived from 10 m DEMs & a process-based model
 - Complete coverage
- Drainage density & spatial extent accurately represented given DEM limitations
- Empirically-calibrated attributes including mean annual flow, stream gradient, valley width, & periodicity

Current Streamside Forest Cover Tillamook and Nestucca Watersheds

Current Streamside Forest Cover by Ownership Tillamook and Nestucca Watersheds

Management Influences

Current Probable Landslide Density Knowles & Sweet Watersheds

Probability of Delivery From Debris Flows to Anadromous Fish-Bearing Channels

Tool for Prioritizing Hydrologic Units

Approach

- 1. Develop & apply watershed condition metrics
 - Intrinsic potential
 - Management influences on streams
- 2. Model relationships among salmonids, their freshwater habitats, and landscape features
 - Evaluate watershed condition metrics
 - Identify new relationships

Evaluate Watershed Condition Metrics

- Why?
 - Reflect our best understanding
 - Hypotheses about forestry effects on streams
- Develop statistical relationships with fish and habitat data
- Modify metrics if suggested

Identify New Relationships

- Channel unit feature
 - Mean density of wood in pools
- Landscape characteristics
 - Delineate analytical units for each surveyed reach at 5 spatial scales
 - Overlay analytical units onto landscape coverages
- Best subsets linear regression at each of the 5 scales

Five Spatial Scales

 Differed in extent upstream and upslope of surveyed reaches

 Designed to represent different source areas and processes for delivery of materials to surveyed reaches

Stepwise Regression Results for Large Wood Density

Corridor 0.34 (0.03)

+% Area M-VL Diameter Trees- % Area Resistant Sedimentary Rocks

Relationships Between Landscape Characteristics and Large Wood Density

• Explained in part because:

- Big trees on land provide large wood to channels
- Fewer landslides reach streams in sedimentary rock types in Elk River
- Were strongest with landscape characteristics summarized for adjacent hillslopes and smaller streams in addition to fish-bearing reaches

Conclusions

Watershed condition metrics:

- High intrinsic potential for steelhead on public, forested land and for coho salmon on private lands with varying uses
- Intrinsic potential and management influence metrics can identify hydrologic units for protection or restoration

Modeling:

 Multi-scale analyses can suggest areas and processes most tightly coupled to stream habitat for evaluating watershed condition metrics & suggesting new relationships

Spatial data:

- Both approaches require consistent broad-scale data layers
- Results may be compromised by poor quality data such as the currently available road layer