Introduction

Large, connected regions, patches of vegetation landslides are increasingly linked to local ownership and associated management policies. Moreover, conservation actions may offer surrogates for biodiversity protection on lands under federal, state, or private ownership. Conservation lesson for coastal forests contribute to overall conservation goals while simultaneously producing commodity values. We also document how the elements of regeneration efforts such as species, habitat, and landscape patterns can be combined to achieve conservation of threatened species and/or values. In this study we used GIS and regression models similar to the Gradient Nearest Neighbor method to examine the distribution of variability for forest succession, ownership, and lands of different ownership.

Objectives

- Define and map key elements of current regeneration efforts that can be combined to achieve conservation goals.
- Define and map forest resources, including forest composition and landscape patterns.
- Assess the potential benefits of combining efforts to achieve conservation goals.

Methods

- We employed a tree-based regression model using GIS data for our analysis. This method is a non-parametric approach that can handle a wide range of variable types and can be used to model complex relationships between variables.
- We used a gradient-based approach to map forest composition and landscape patterns.

Key Findings

Potential Vegetation Types

- Species distribution is associated with environmental and relatively accessible forest management practices. Conservation actions can be combined to achieve conservation goals.
- Vegetation types are well represented in areas managed for ecological objectives, except for forest road networks. Forest road networks and their related areas primarily on non-forested lands.
- No forest reserves are a small portion of the landscape and concentrated in data spaces.

Current Vegetation Structure

- Forest structure is strongly influenced by past disturbances and forest ownership.
- Old forests are a small portion of the managed landscape, below the historical range of variability, and concentrated in non-forested lands.
- Secondary forests, major successional forests are one of the most important and richest biodiversity zones.

Forest Policy Implications

- The 40% containment and restoration of the managed landscape to achieve biodiversity goals cannot be met by wilderness or federal lands alone.
- The multiple ownership landscapes consisting of non-forested managed forests and federal contribution to biodiversity goals cannot be met by wilderness or federal lands alone.
- The multiple ownership landscapes consisting of non-forested managed forests and federal contribution to biodiversity goals cannot be met by wilderness or federal lands alone.

Acknowledgements

The authors would like to thank the Oregon State University for their support in this research.

For More Information...

E-mail: janet.ohmann@orst.edu

OGHI (Old-Growth Habitat Index) ranges from 0.0 - 1.0 based on stand age, large tree crown, etc. A value greater than 0.75 is considered to be in the Old-Growth Habitat Index (OGHI) category.

Table 1: Species distribution is associated with environmental and relatively accessible forest management practices. Conservation actions can be combined to achieve conservation goals.

<table>
<thead>
<tr>
<th>Recreation/Conservation</th>
<th>Ownership</th>
<th>Data Source</th>
<th>Methodology</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation/Conservation</td>
<td>Ownership</td>
<td>Data Source</td>
<td>Methodology</td>
<td>Analysis</td>
</tr>
</tbody>
</table>

Figure 1: Species distribution is associated with environmental and relatively accessible forest management practices. Conservation actions can be combined to achieve conservation goals.