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Overview

e “Genomic technologies” — what is that?
e Status of conifer genome sequences
e Potential applications to breeding

e Cost-effectiveness
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Genomic technologies

* DNA sequencing using massively-parallel methods

® Total genomic DNA
e Functional complexes of DNA and proteins
 DNA copies of RNA molecules

* Array hybridization — gene expression and variant
detection

*Proteomics - separation and analysis of proteins
* Metabolomics - separation and analysis of metabolites

* Metagenomics - Analysis of mixed populations of
% microbes by DNA sequencing
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What and where is the genome?

Chromosome

Diploid pine cells each contain about 42
linear feet of DNA, packed into 24
chromosomes in the cell nucleus.

How DNA is packed into chromatin, and
unpacked to allow gene expression, is
an important part of how genes are
regulated, but we know little about
how this occurs in trees

Methods to analyze chromatin
structure rely on availability of an
assembled genome sequence
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What do genes do?

Introns
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Some genes regulate other
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...and those may regulate others

S—— . .

35-gene interaction network:
some positive interactions,
some negative interactions,
& some auto-regulation.
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.and It gets complicated
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Genetic Potential
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Components

Neutral sequences
Coding sequences ~ 1%
Regulatory sequences ~ 1%




A Less General Model
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Cost per million bases of DNA sequence

DNA sequencing cost at NIH genome centers
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Genome size
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PineRefSeq
Assembling the Reference Sequence
Based on Whole Genome Shotgun Sequencing
Sheared genome P S ———
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Genome sequencing progress

Sugar pine — 34 billion base-pairs
e 1.4 x 102 bases of DNA sequence
e 58.4 million scaffolds in v 1.0 assembly

Loblolly pine — 23 billion base-pairs
e 1.9 x 10*¢ bases of DNA sequence
e 14.4 million scaffolds in v1.01 assembly

Douglas fir — 18.6 billion base-pairs
e 1.1 x 10*¢ bases of DNA sequence
e 39.6 million scaffolds in v 0.5 assembly
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http://pinegenome.org/pinerefseq/
http://www.ncbi.nlm.nih.gov/SRA/

From first principles

*Three major classes of genetic variation
—Variation in coding sequences may cause changes in gene
product function
—Variation in regulatory sequences may cause changes in
timing or location of gene product expression
—Neutral variation has no effect at all

*Mapping genotype to phenotype
—Genetic covariance usually estimated by allele-sharing
—Similarity in gene expression patterns is another level of
genetic covariance that integrates environmental information
and genetic interactions
—Neutral variation has value only if in LD with causative
variants
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Sngle-nucleotide polymorphisms

SN Ps

SNP

{
Tmeel1 ACGTGTCGGTCTT A Maternal chrom.
ACGTGTCAGTCTT A Paternal chrom.
Tee2 ACGTGTCGGTCTT A Maternal chrom.
ACGTGTCGGTCTT A Paternal chrom.
mees ACGTGTCAGTCTT A Maternal chrom.
ACGTGTCAGTCTT A Paternal chrom.

Tree 1 is heterozygous Trees 2 and 3 are homozygous
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What to measure?

*DNA sequence variation — stable in development
—SNP = single-nucleotide polymorphisms
—Structural variation — in maize, any single inbred line has
only about 80% of the total “pan-genome”

*Epigenetic variation — may be unstable

*Gene expression — will this be stable enough?
—Individual genes
—Networks or modules of coexpressed genes

*Metabolites or proteins
—May also be unstable over development
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Applied Breeding Options

Pedigree control and population management
Measuring pollen contamination in orchards
Confirming validity of controlled-cross offspring

Pedigree reconstruction or estimation of relationships
Pedigree reconstruction requires fewer markers
Estimation of realized relationships can add more value

Prediction of breeding value based on markers
QTL mapping or association genetics
Genomic selection based on high-density marker genotyping
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Mutations and linkage disequilibrium

Many copies of a particular chromosome exist in a population —in this
example, a chromosome has five different genes, and each gene has seven haplotypes

A mutation occurs in a particular haplotype that causes a genetic difference
in one of the five genes on the chromosome, and results in a new
phenotype.
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That mutation will remain associated with that same haplotype of that
gene for many generations, but recombination will exchange all the other
haplotypes so that there is no association between any other gene and
the new phenotype caused by that particular mutation in that particular

gene.
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Linkage disequilibrium
How is genetic variation distributed in populations?
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SNPs in the same haplotype may be in linkage disequilibrium — the
presence of a particular allele at one locus is associated with the
resence of a particular allele at the other locus across the population
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Linkage disequilibrium decreases with
distance in Pinus taeda
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SNPs in the same gene can be in disequilibrium; SNPs in
different genes are likely to be in complete equilibrium
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How to measure it?

*SNP variation
—Arrays — closed system, only assay what is on array

—DNA sequencing — open system, detects what is present,
also provides haplotype information

*Epigenetic variation — hard to do high-throughput

*Gene expression
—Arrays

—Sequencing — provides data on both sequence variants and
relative expression levels

*Metabolites — chromatography and mass spec
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Summary

e Conifer genomes are complex
— Low signal-to-noise ratio
— Much remains to be learned

— Work is underway to improve the assembly

e Technology platforms vary in cost and value

— Convenience of array platforms may be offset by closed
nature of system and cost structure

— Sequencing costs are decreasing and sequence data have
value for discovery of rare variants and haplotypes

— Scale of costs is an important consideration for cost-
effectiveness
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Summary

“Intermediate phenotypes” interact
— Within-level and among levels
— With environment
— The network of interactions can be quite robust
e Predicting genetic potential from genomic data
— Genetic covariance usually estimated by allele-sharing

— Similarity in gene expression patterns is another level of
genetic covariance that integrates environmental information
and genetic interactions

— Metabolite variation may contain additional information,
or it may simply add more predictors
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Summary

e Cost-effectiveness
— Do the right experiment first
— Look for opportunities to scale efficiently

— Successive approximations to the ideal
* Breeding applications
— Perfect predictive power is not required

— Breeding strategies may need to change for some
applications

— Willingness to change breeding strategies may depend on
cost and predictive power of the genomic tools to be used
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Why bother?

*Ecologically important

—Clean air & water, other “ecosystem services”
—Wildlife habitat
—Recreation

eEconomically important
—Timber production is an important part of the US
economy, particularly the southeastern US

*Climate change puts forests at risk

—Better understanding of adaptability is needed
—Phenotypic plasticity versus genetic adaptation

L}
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Systems genetics approach

“Systems genetics is an approach to understand the
flow of biological information that underlies complex
traits. It uses a range of experimental and statistical
methods to quantitate and integrate intermediate
phenotypes, such as transcript, protein, or metabolite
levels, in populations that vary for traits of interest.”

- Civelek & Lusis

Nat Rev Genet 15:34-48, 2014
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The hard part...

Can we predict genetic potential based on
DNA variation in the pine genome?

—Expect about 20 million SN Ps to choose from; most are probably
neutral

—Coding sequences are ~1% of the genome, will contain variants
affecting gene structure

—Regulatory regions of pine genome have not been mapped

*N ot clear which genetic variants will be
iInformative or should be assayed
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Our approach

-a%*é%? -I\/Ieasure at a level of detail appropriate to the scope
/! of the system

—No inbred lines, so half-sib or full-sib families are the
appropriate “genetic entries”
—Distinguishing signal from noise is a challenge

*Predictive power is a higher priority than mechanistic
understanding

—“Missing heritability” a problem with GWAS approach
—Modeling at whole-genome level can have more predictive
power
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Overview

*Status of conifer genome sequences
*“Genomic technologies” — what is that?

*Methods for discovery and analysis of
—DNA sequence (genetic) variation
—Chromatin structure (epigenetic) variation
—Gene expression variation
—Protein variation
—Metabolite variation
—Associated epiphytic or endophytic microbes

ePotential applications to breeding
eCost-effectiveness
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Preliminary results with pine

243 unrelated clonally-replicated pine genotypes grown in two locations
*Height growth over two years measured for one set of two replicates/clone
*Gene expression (110 genes) and metabolite levels (383 metabolites)
measured at age 1 year on two more replicates at a different location

*H?2 of height measurement ~ 0.43

A cross-validation analysis using
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A Less General Model
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A Less General Model
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Key concepts for genetic analysis

Example: Imagine a chromosome that contains five genes

After many generations of DNA replication and cell division,
the population will contain many different versions of this
chromosome and the genes that it contains. Some mutations
affect the function of a gene (x), while others do not (0).
Mutations can be insertions, deletions, or substitutions of one
base for another in the DNA sequence. Most are Single
Nucleotide Polymorphisms, or SNPs
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Sngle-nucleotide polymorphisms (SN Ps)
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SNP genotyping by amplicon
i in Abies f :

Target SNP
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SNP genotyping by amplicon
resequencing in Abies fraseri

Non-Target SNPs
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