Instilctions Complete and formard to Committee along with a sketch type map of the alea and a location map (highway map) indicating geneial location of proposed area Information on past ormership and management, scientific or cducatiol al use, hydrologic featurcs, rare plants or animals or other peitinent facts should be included Please type Photos, if avallable, will be welcomed

Name of Proposed IVatural Area
Abbot Creek Natural Area

Location	State	Oregon	County	lackson and nouglas	Totāl Area	2660	Acres
	Neares	Town and	Distance	Prospect		12	
				Name		Mites	

Agency/Owner USDA Forest Service

Administrative Unit Rogue River National Forest Natl Forest, Natl Park, Wildlife Refuqe, State, Univ, etc

Address Federal Building, 333 W Eighth St, P 0 Box 520, Medford, OR 97501
Permanence Affordea How U-4 (36 CFR 251 23)
Laws, Regulation, Will, Endowment, Lettel of Agreenent, ctc
Primary forest Type
SAF $\frac{243}{\text { Type Number }}$ Ponderosa pine-Sugar pine-Fir $\frac{2055}{\text { Type Name }}$ Acres

Dominant Trees D B A
$\mathrm{Hg} t$
Age \qquad
Other Important Types or Vegetation
Dominant Trees Dame D B H Hgt Age Area
SAF Type,
$1966 \mathrm{~K}-829$
chaparral
605
Number and Name
工
-
-
-
-
-

Barren, Water, Buffer Zone, etc \qquad none

Acres
Area and Nature
Description of Vegetation and Other Distinguishing Characteristics
Mixed Sierran type
conifer stands with particularly fine specimens of sugar pine (pinus lambertiana),
White fir is major climax species
Elevation $\frac{3300-6131}{\text { Range and Avclage }}$ Feet Topography $\frac{\text { Steep }}{\text { Level, Roling, Steep, etc }}$
Geology and Solls Andesitic pumice
Alluval, Volcanic, loimine, Podsol, Selpentilie, Etc

Justafication Briefly outline why this tract should be designed an SAF natural area
The tract provides innumerable opportunitids for research on southwestern Oregon mix \bar{x} edconifer forests due to its size and stand diversity Studies of hydrologic and nutrient cycling in essehtially virgin drainage, itfe histories of small fauna, and variations in composition, productivity and successional development of plant communities would be appropriate it is an excellent location for studies of sugar pine under near-optimum conditions as well as for ecological studies of other tree species

Forest Service

Approved

> Section Natural Area Chairman or Natural Area Liaison Officer

Approved for Listing in Register of SAF Natural Areas
Charrman,
Committee on Natural Areas Date

Committee on Natural Areas, Society of American Foresters,
5400 Grosvenor Lane, Washington, D C 20014

Report on Abbott Creek Natural Area (roposed)

I. Description of area

This area, known as the hbbott Cr ep iatural Area, is located on a tribu mary of the main roque diver, Jackson and Douslas Counties, rogue dIver national Forest, Oregon

Description of the boundaries of tie area is as follows:
 line of Sec. 37, T. 30 S., R. 3, thence northerly along the along the divide to Abbott suite; thence southerly approximately one-lal. nile to the head of the :Addle branch of Ab ot Creek; thence southerly along the main branch of Allot Creek to the south line of Sec. 36,
 beginning."

Total acreage of the tract is 2,660 acres, all of which is national forest land. Of this area 2,055 acres are timbered, the remaining acreage being in brush, grassland, berren and small burns.

II. Special Features

Special f atures of this area, sufficient to justify its classification as a natural area, are the volumes and stands of sugar pine (inns lam sertiana). .he bulk of the heavier pine stands are located near the center of the area, well protected from outside influences. In these type classification in this region, in instances running over 40 per cent of the stand by forty-acre tracts. As characteristic of these stends, the vole is mainly in the lar diameter classes, 50 to 60 inches and the volume la mine Reproduction and advanced row th in this species will also be found over the area in enteral.

Another feature of the area fitting into its desirability for natural area purposes is the absence of roads or trails, and the fact that none are contemplated. The Golden Stairs Trail, which forms the eastern boundary

The area is under the direct view of nobott jute Lookout, wi 1 ch is
located on the northwest boundary of the tract.

II. Cover Types and Cr is e Volumes

Cover types found on the ares, in their approximate order of acreage, are ouglas-fir, sugar pine, white fir, shasta red fir, bris!, incense cedar ponderosa pine, and grassland.

Species volumes, by sections, are as follows:

IV. Physics Conditions

The ares is moderately rough, be in; broken up into numerous ridges. Hock of 3,250 to approximately 6,000 feet on the hi he st point of the divide
V. Wildlife Factors

Game occurs in all the native species, in normal amounts and rears no par icular relation to the prime purpose of the natural area. The streams are small and lie bore any fishing nos ibilities. !o lakes are locate within the area.
V. Present Occupancy

None.
VII. Recreational and Other Values

No recreational values exist. Uther then an oseaional inter or hiker using the trail wounding the tract on tie east, the ares \#ill probably not be visited for recreational purposes.
at present there is no known mining claim locition within the area. Sue o its higher elevation and small streams, there is very lit: lc likelihood of placer locating, the popular mining venture in this general vicinity. Apparently the area lies out

TIII. Recommended tanamement Policy

vo recreational structures ar s required in the ares.
Protection and administration structures will not be required. Detection coverage is directly supplied by the Abbott Butte Lookout locted on the boundary or the area. sup. ression coverage, li action to the exterior limits, and boundary trails readily trevelahle from central fire fighting forces.

Foot trails from the colden stairs Trail into the heavier sugar pine stands within the area would be desirable.

Drift grazing by cattle is permitted within the t\%ct and is not believed to be detrimental to the purposes of the rural area.

No water storage or other possible use is foreseen for the area.

he matter or blister rust control in and adjacent to the natural area
 natural area run its course in ene area, thereby permitee, if ribs con errol proves to effective, it could well be the only thing which mould result in the perpetuation of surer pine in this area. verdin. ${ }_{6}$ a survey by the Bureau of stomoloby and plant quarantine to determine the need and cost of rust control in this vicinity, it is recom ended that final decision on blister rust control in e held in abeyance.

Approved
 $1 / 4 / 46$

Noondigtudnu
Shit

 inmecor practice
 mange \& Experiment station

By virtue of the authority vested in me by regulation -4 (251.2) C7R) of
the Secretary of Agriculture, I do in reive design nate as the : pant CaPEK ATURAL ANEA the lands described in a report dated
by Karl L. Janouch, Forest supervisor; said area shall hereafter be adand the instructions thercuncier.

An (ate)
(194]

ABBOTT CREEK RESEARCH NATURAL AREÁ1/

Southwestern Oregon mixed conifer forest with especially fine examples of sugar pine occupying a large (1,077 ha) mountain stream drainage

Abbott Creek Research Natural Area was established on 18 , 19, to exemplify the Sierran-type mixed conifer forests found in southwestern Oregon The tract was specifically selected because of the excellent representation of sugar pine (Pınus lambertrana) in many of the stands The 1,077 ha (2,660 acre) natural area is located in Douglas and Jackson Counties, Oregon and is administered by the Prospect Ranger District (Prospect, Oregon), Rogue River National Forest It occupies portions of Sections 23, 24, 25, 26, and 36, R $2 \mathrm{E}, \mathrm{T} 30 \mathrm{~S}$, and of Sections 19,30 , and $31, \mathrm{R} 3 \mathrm{E}, \mathrm{T} 30 \mathrm{~S}$, Willamette meridian The majority of the boundaries follow physiographic features (fig $\mathrm{AC}-1$) the dividing ridge between the Rogue and Umpqua Rivers on the north, the Golden Stairs trail, which essentially follows a ridgetop on the east, and the main and west branches of Abbott Creek along much of the west edge The natural area is located at $42^{\circ} 56^{\prime} \mathrm{N}$ latitude and $122^{\circ} 31^{\prime} \mathrm{W}$ longitude

Access and Accommodations
The natural area is approached via Oregon State Highway 26 Personnel at Prospect Ranger Station can provide directions through the network of graveled forest roads which lead from the highway to the southwestern corner (Forest Road 3047) and eastern edge (Forest Road 3016) of the tract (fig AC-1) Unımproved dirt roads also lead to Abbott Butte Lookout at the northwestern corner (Forest Road 2923) and along the west side of the main branch of Abbott Creek, the latter road is drivable for only a short distance The unmaintained Golden Stairs trail forms the western boundary

Cross-country foot travel provides the only access within the natural area, there are no trails or roads inside the boundaries Because of its large size and rugged character such travel is time consuming and often difficult and hazardous

Commercial accommodations are available at Prospect and Union Creek located approximately 16 to 24 km (10 to 15 miles) from the natural area There are also numerous improved forest campgrounds in the vicinity

Environment

The Abbott Creek Research Natural Area is a relatively large mountannous tract which occupies the entire drainage of the maln branch of Abbott Creek as well as portions of tributary drainages (fig AC-1) Topography is generally rugged with moderate to steep slopes and numerous rock outcrops and escarpments Small benches along Abbott Creek and more extensive benchy areas below the summit peak of Abbott Butte provide the only gentle relief Elevations range from about $1,000 \mathrm{~m}(3,300 \mathrm{ft})$ to $1,869 \mathrm{~m}(6,131 \mathrm{ft})$ at Abbott Butte Lookout

The natural area is located in the geologically older Western Cascades and is composed entirely of volcanic materials Bedrock at higher elevations is composed of maddle and upper Miocene andesite flows, probably belonging to the Sardine formation (Peck 1961) At lower elevations Oligocene and lower Miocene pyroclastic rocks occur and may include tuffs, breccias, and conglomerates The summit area of Abbott Butte itself is mapped as basalt of Pliocene or Pleistocene age Finally, some Eocene to Pliocene felsic intrusive rocks may occur along the west boundary

1/ Description prepared by $\operatorname{Dr} \mathrm{J}$ F Franklin, U S Forest Service, Forestry Sciences Laboratory, Corvallıs, Oregon

White fir appears to be the major climax tree species in most of the forest stands Seedlings and saplings of this species are typically more common than reproduction of Douglas-fir or incense-cedar under closed forest canoples However, most of the stands are in relatively long-lasting seral stages many decades, or perhaps several centuries, away from climax condition even in the absence of wildfire or other disturbances Severe environmental conditions on many sites retard successional processes and there are typically numerous small openings which allow less shade-tolerant species, such as Douglas-fir, incense-cedar, and sugar pine, to reproduce (fig AC-2)

The composition of all layers of the forest communities varies markedly with molsture and temperature gradients, which are roughly correlated with soil-1and form and elevation, respectively, and with stand history Mature forests on mid and lower slopes are dominated by a mixed overstory of Douglasfir, incense-cedar, sugar pine, and white fir Common understory species include Corylus cornuta var calzformica, Pachıstrma myrsinztes, golden chinkapin, Rosa gymnocarpa, and Vaccunzum membranaceum in the shrub layer and Chrmaphrla umbellata, Achlys tmphylla, Berbems nervosa, Pyrola prcta, Ims chrysophylla, Tmentalis latrfolza, and Carex sp in the herb layer There are many variations on this basic theme, however For example, incense-cedar and Douglas-fir increase in relative importance and ponderosa pine and a variety of hardy intolerant shrubs and herbs including many typical of the nonforest communities discussed below make their appearance in drier phases of this community

Stands on stream terraces typically have more white fir and less incensecedar and sugar pine in the overstory Douglas-fir remains a major dominant Several species are found solely or in greatest abundance in these terrace communities western hemlock and western white pine in the tree layer, western yew, Acer circinatum and Cornus nuttalliz in the shrub layer, and Asarum caudatum, Trullzum ovatum, Drsporum hookem, Clintonra unzflora, Viola glabella, Linnaea borealrs, Calypso bulbosa, Anemone deltordea, Rubus nivalrs, and Vrola sempervirens in the shrub layer These species sharply distinguish the terrace communities from those found on more xeric habitats

Higher elevation forest stands include some dominated by white fir with relatively lush forby or weedy understories Typical understory plants are Ribes viscosissimum, Mertensia panculata, Smilacrna sesszlıfolza, and several grasses and a variety of other broad-leaved herbs Small stands dominated by Shasta red fir singly or in mixture with white fir or mountain hemlock, are also present These characteristically have sparse understories

The nonforested communities are also highly variable in character including several rock outcrop types and subalpine mosaics of relatively lush herbaceous stands and tree and shrub patches Communities on rock outcrops and scree slopes reflect the extremely xeric nature of the habitat (fig AC-2) Typical plant species include Ceanothus prostratus, Arctostaphylos nevadenszs, Senecro integermmus var exaltatus, Pellaea sp, Cherlanthes gracıllıma, Cystoptems fragilzs, Strpa columbrana, Collonza heterophylla, Cynoglossum grande, Delphznzum spp , Ribes cereum, Marah oreganus, and Epz Zobrum minutum On some nonforested sites, as well as in open forest stands larger evergreen shrubs such as Arctostaphylos patula, Ceanothus velutrnus and Garrya fremontr

The meadows at high elevations are dominated by herbaceous species such as Veratrum vimde, Ptemdium aquz Ǐnum and various grasses and sedges Small perennial herbs such as Erythronzum grandzflorum and Claytonza lanceolata are also common Intermixed with the herbaceous stands are large Sorbus bushes and individuals and groups of young trees--ıncense cedar, white fir, and Shasta red fir There is strong evidence of extensive meadow invasion by tree species during the last century

The tract provides innumerable opportunities for research on southwestern Oregon mixed-conifer forests because of its size and the diversity of stand conditions and environments present These could include studies of hydrologic and nutrient cycling in an essentially virgin drainage, life histories of all but the largest animals, and variations in composition, productivity and successional development of plant communities It is an excellent location for studies of sugar pine growing under near-optimum conditions as well as for ecological studies of many other tree species The accidentally-created clearcuts also provide opportunities to study secondary succession

Maps and Aerıal Photographs
Special maps applicable to the natural area include Topography--15' Abbott Butte, Oregon quadrangle, scale 162,500 issued by the U S Geological Survey in 1944, and geology--Geologic Map of Oregon West of the 121st Meridian, scale 1500,000 (Peck 1961) Either the District Ranger (Prospect Ranger District) or Forest Supervisor (Rogue River Natıonal Forest, Medford, Oregon) can provide details on the most recent aerial photo coverage of the area

Figure Captions

Figure AC-1 --Abbott Creek Research Natural Area, Jackson and Doug1as Counties, Oregon

Figure AC-2 --Natural Features of Abbott Creek Research Natural Area Upper left Looking north over the northwestern quarter of the natural area from a rocky promotory in Section 31, all the area visible is within the natural area Upper right Typical old-growth specimen of sugar pine, a species well represented in the natural area Center left Community of Arctostaphylos nevadensis and Ceanothus prostratus growing on an open scree slope Lower left Typical south slope stand of Douglas-fir, incense cedar and scattered sugar pine Lower right Forest opening occupied by reproduction of Douglas-fir and sugar pine, frequent openings of this type provide sites for reproduction of less shade-tolerant tree specres

LEGEND

| | BOUNDARY, ABBOTT CREEK |
| :--- | :--- | :--- | :--- |
| SECTION LINE | | REARCH NATURAL AREA

Rod Mitchell
Depretment of Brolos y
Colorndo Womens College
Denver Color do 80220
and
Will Moir
Rodeo New Mexico 89056

Vegetation of the Abboti Creek Research Natural Area, Oregon

Abstract

This study ilentifes the different forest communaties present in Abbott Crech Natural Arci Oraon It also describles the floristic compoition of each communty thic an 1 comments on the 保 ucre malyzed using SIMORD a two dimensionil ordmation proce lure

Introduction

This piper gines the results of wegetuon chassficutem studics in the Abbote Crach Natural Arci locited ibout 29 km (15 mi) west of Criter l the in southucstern Ore gon Intecest in this urci stems from a report by H I Andrews (196) who notked the special fereures of thas are are the volume and atonds of sugh ir pine (Pimur lambertioma) As charieteristac of these stinds this volume is mumb in the harge diameter chases 50 to 60 molkes and over thus presenum, a truly optumum stand of Gexithern Orepon subir pine Andrews ilso stited that reproduction and adanced growth of the sughe pinc was of fencral occurrence in the mitural wor When we revisted bere some 25 gears ofter Andrews repert we were impressed by the complexity of forest communtics ind by the hews reprexluctoon of white fir (Abier concolor) which on most stes appared to be the climix tree

Hhe forcst communitics of the upper dramege bisin of the $\Gamma_{\text {ise }}$ Fork of Abbute (rech are quite different from those described from other rebions of the Western Ciscak Province (Trmalin and Derness 19(19) ithe forest tepes in the Abbote Creck area however wre withon the Abres concoln, and Abres magmi ca sharteners
 Waring (1969) in the Sishisou Mountions where the commennes tipes are quite dif ferent Therefore the descripteon of hibitas plant communtics ind tree succersional rchuronships of Abbott Crcch Naturil Arca contributes to our knowledge of the met ural vegetution of the Cascade Range

 (Momer 1972)

Study Aren

Abbete (ach Nitural Area is lakited $19 \mathrm{hm}(12 \mathrm{mi})$ west of (ruter 1 the Niteond Pirh in the Rogue River Numomal Iorest of somitiorn Oration (lis 1) lis hemediries calose parts of Doughis and Jacheon countics and the totil ire is $10 / 6$ hectares (2600)
the western border of the metural are is defined by the mun branch of Abbote Crech and is the locetion of casiest access to magor portions of the are a An unmun taned logsing rond parallis the more southerly half thas roid is casil) accesuble from US Ilighung 26 vin forest rond 3047 The northern border is defrined by 1
 border is wh Abbott Butte firc lox)kous which is servicad by forcst rond 2923 and the remmonts of a tral whath follows thas ridec Ihe ensern colle of the ure follows the Colden Stars [ral for the most part which is acecosatile it iss southern end by forest rond 3017 and by forcst rond 3016 at 2 more northerly pornt The southern border is shore and is aecessible from forest rond 2017 Mocre ire no trals or romds withen the irea the myor topographic features of which are shown in Iigure 2

Physiography and Geology

Three dranyes make up the major portion of the aren with the northernmost con tuming almost half of the total exeage The berocril toposriphy is quite rusped with much of the area cousisting of slopes of 25 perecnt or more There ure seme portions of gentle to atmost no relicf thons the western citac of the area ne ir Ablent Crech and some benches at high clevations blow Abbott Butce M ing of the ridace vegctition

The highest pont in the wet is Abbott Butte elewtion 1969 m (6131 fo) io

lyure 1 Iocmen of Allote Crech Nimural Arci

 Ith ecdras le urrent/Arctotithblor net adenter Asso

Mitchell and Mor
cuted in the nothesestern corner ble cese of the rides thet pirillels the methern border and much of the crest of the ridac f rilleling the cistern border are boose $(3300) \mathrm{fl})$
(cologicills the coture area is volenace in organ the soil of the numat ire is described is beloming to the Iacerence (a) iti soll serics (Power ind Simenomen 1969) Lypiolly these soils tre decp and well drumed wah dirh redhashomen frinble lomm surfice ligers and diy lom moderately blochs subsols Roch frismeirs range in abund mace from 0 to 30 percent or more by whime Fhe solls tre moderitels acid in reiction

Climate

 precipitation is a result of low pressure sestems which mone costu ird wross "esiern Oregon from the Pacific Occin Durmy the summer thas dommont dimute ferume is modificed by hish pressure asetems which shift fronts northewed resultiong in cheir dry weather thas phenomenon results in cool wat wotice ind warm dry summers

Methods

 plots (I ranklin Dyrices and Mon 1970) and face forcst (lassificition unts were dis tengurshed (Mitchell 1972) In the summer of 1972 permment ddewond plots were estobishad withon wh of these eppe Ihace plots were $25 \times 15 \mathrm{~m}$ All uces

 its tume of miximum folinge specics not in the guilrits but accurrme with the $25 \times 15 \mathrm{~m}$ flot were icoorded for constince speces of the homogeneous watimen pust outsede the plot were recorded for presence

The plont mames (Pech 1961) of thas seled) ire bied upen woller ypeamens deprated in herbara it Orebon Stite Umacrates and the US Iorest Service it lore Collins (olorido

Permanently morked cameri locations were catablastied it ach of the 25 , 15 m plots Here photogriphs were tiken of the castang iegctotoon within (ind wime tames in the victaty of) the plots

Dat: from beth recomoussince and perminent fot emples were miljed by stme hatey and ordination procedurcs using SIMORI) a reference stand ordmute n techangue (Dech Peddec and Mour 1970) We selected reference plors used we define the and Y ques of the ordinumon from mong the recomomesince fors the represenced in our pudement epteal and distinceric environments Afer screal trils of refer

 (og slope caposure clevation limiform) not wed in (rdantom were ill (rimern
 1970 Dmixenmore 1906)

 b) cenopy coverise cliss in the manace smalir to the understory wetretion of the forest flots Ihe 25 m line m ch communts is permenently morhed by stahes ot cich end The meisurements were taken the thard week of Junc 1972

Results

Irom the ambas of the oribimal rcconnussince dita five forcst communty ispes were acsarnited (7able 1) and momed according, te thear mojor oucrstory and understors modicurors

When beoth the reconmussinec and imilytical plots ($\Gamma_{1 / 2}$ 2) were subjected to the SIMORD prosernm the two demensional ordmition pittern depicted in Figure 3 resuled It con be seen that the plots designoted as belonsing to the same communies type tended to froup with each other and thit the andetical plots chonen to represent ench group fall well within the borders of their specific groups
 position in the successiomal sequence of 1 מisen communty type To evilute dis facior the ife structure of these overstory species was determaned in eich plot (1 y i) Of the mijor overstors specics cinlunted Preudorimeament ift was unique in thit $?$
 modicues distmbusluing fortures

CIASSIIICATION IVII	$\begin{gathered} \text { TRII } \\ \text { Chimex } \end{gathered}$	SPICIS Lute Scral		UNDIRSIOR) WGITAIION	
			$\begin{aligned} & \text { Concr } \\ & \text { (P1R } \\ & (1 N r) \end{aligned}$	Lverireen (PRR CINI)	Myor Siccies
Ahere misuliea Comilex	Abmi (1 smc)	Abro	$90100+$	$+310$	Actis trif bill: kulur pouflora I cmustulgzis
Iote 1hilli/Acera Aswolition	$\begin{aligned} & \text { Alion } \\ & \text { Ishe } \end{aligned}$	Psme	$90100+$	-1570	1ecreir m" m 「an \|radids V"t in" hollran lı!!!lirctiar
Rhiodenlrot Phise	$\begin{aligned} & \text { Al co } \\ & \text { Tshe } \end{aligned}$	Psme	90100 f	$50+$	kbololcnlol macrocarpum
Abus ennc ilor/Linnacs bore 1/tr Associzuon	Al (o) (Ishe)	$\begin{aligned} & \text { Pame } \\ & \text { I ide } \end{aligned}$	6090	60	
It mplat miderta lhise	$\begin{aligned} & \text { Aloo } \\ & \text { I lic } \end{aligned}$	Psme	2075		II mitha motert: Lethe: Iorcalts
Abuer cull lieuto tuga/ll liplea mode ta Asoctition	Abo I ide	Psme	020	030	ll buflea ma sta I is ch isophylla
licedtuctilacedrial As 1 " 1	$\begin{aligned} & \text { Isme } \\ & \text { 1ifc } \end{aligned}$	Pid		10 (0)	
	$\begin{aligned} & I \sin \\ & \Lambda I_{0}, \end{aligned}$	$\begin{aligned} & 11 \\ & 1: k \\ & 1: l \end{aligned}$	31150	611	

 In csscnce Picadotruga men acsu is not reproducing itself in older stands (prebibly due to tes relatively low shade tolerance) and represents i bite setil stace species Abere concolor and to a lesser extent Ifbocedias decurrent by contrint were repte

 succossfilly and reman the permonent dominame onciseory af eces

The Vegetition Types
1 The Aber mismifie complex is the most extensive in the nothenest corner of the matura trea below Abbote Butce and Elephint Had A virtets of conteristing high clateon forest ind open me idow communtes occur here and in the veinit) of
 serin of the understors the issenented chmex tree speces wors ecording to locit hibitit differences In plots it and 5 Abrer concolon his strong reproduction and is criber a bue seril aceies or shares climex status with Abter magnifer firge spea mens of I blocedias deaticur is well is its promonence is in corl) modon minder indicite the seril niture of this specics Plots 4 and 5 oceur on southe ist facing ca posures of moderace ind stecp slopes respectively Plot 11 on stecp southwest fiemb slopes also has bundint reproduction of Abier concolor in both youns and adianced

 mesmfica and rich herb and shrub understories

Abes m

1stgo h

Abies c

Pinus 1

In each of the plots of I Eature 4 wathon thas compla the totil concrige of mader

 of giccics in the flot it las than one fercent cover

	Alter mapmifica Complex			Abres concolor 7 suga hitero phollt/Acer circenatumb T vis breitolia		co icolor) Lenmac: borcalis		Alic: conconor I sculo tiug:l mcn: "l Whatilea modesta		I foul)tug men terit Libocedrus decurrens/ A cista plilos net tedensts	
Ilat Numlers	4	5	11	3	6	8	10	1	7	,	9
Shrut s Dect luous											
	16	4	1								
	+	2		1			$+$	$+$	1	t	
Araturn			+	14	7	$+$			+		
! , 1umm membrant cum				7	7	6	+				
swiblerect pos mollar				2	1	6	+	t		$+$	
Shrulstivepheen											
l vur luthls				10	4						
R 1 "1"riosa		3		5			2				
				S	$\stackrel{+}{2}$	1	$+$	t		+	
(1111) ars ary (opbolla 				1	$+$	8	1		$+$	1	
				$+$							
A atital hor mozadenses							10				
										15	13
(a 1/fecrimul								+		10 2	$+$
Suffruessent DCa luous											
1 "lus arstas		4	30	3	3	1	8	+	\dagger		
Suffrucsecont I eraricon											
1,1176 banctits				5							
($1 \mathrm{mma} / \mathrm{l} / \mathrm{a}$ umballit	1	t	3	1	2	5	13		1	1	+
Trola secunla										1	+
Iorbs											
kilur petill rus			21	+							
1 "1" c " 1 lutm	2		7				1				
1/ci") "l'm bicolor	1	17	,		$+$			1	\dagger		
	1	3						1	7		
Sent' 1 scitifolis O) 1, be blelenses	2		3	1							
O $1 / \mathrm{b}$ be thensts (1 : th 1	3	6	1		1				t		
V1, JCriciu	3		6	1					+	1	
	3					1		t			
	9										
(luw') 11 liun	2	7	2		$+$		1				
	1	7	7	1	+		1				
11 clium tintinu	7			$+$			1				
1 "1: 1 mucthol/a	3	2	1			$+$		1			
	2	2						$+$			
		5	$+$	$+$		1	2	$\stackrel{+}{+}$	$+$	F	$\stackrel{+}{+}$
Clli" " nituri	-	1	t	t	$+$	1	$+$				
A" 1 He deltotia 1) 116 li				1	1	$+$	$+$				
$1)_{11} 111 \mathrm{lara}$			\dagger			1					
$\begin{array}{ll} 111 \\ 1111 & 11 / 1 \\ 1 & 111 \end{array}$		1	1	+	4	1	$+$	+	1		F
		1		+		1					
S1"1) rır (m) , mis											
"1/bk:" dersa				2	$+$	1	9	1	r	$\stackrel{+}{8}$	$+$

ous and that the evergeen life form is very peorls represented Ihas sursest thet low winter temperateres are more critical thin sex mal summer drounthe in the sur

 7 axur breafolat assocituon Stands of thas assocatoon ire almost caclusiacly locited In or near the boteom of major drumyes usually thes with fermenent strenms the
 often P montionla the presence of all reproductive stac chases of Abicr enucolor
 reproductice ibundance is especially cvident in plot 3 but soutered modraduk of youne or adsanced regencrution are cvident nearly throughout this willes betom habitet

The tall shrub lijer is extensive and wall descloped Both Aco aromitum
 tall shrubs (or low trecs) of thas understors stratum are Conjlus con lluta Connur mut

 nenora as myor apecies licergecens comprise 1660 percent of the underseory de pendeng mostly on rehave proportions of Acer and I axas) with none ciergicen species occurring in the two plote

3 The Abror concoloifinnta botedis associnton is refresented by flows 9 and 10 These plots occur on mesic lower slopes of northerly or easerly cuposure id pacent to the drameges supporting wefetation of the alose essextition Stinds of the
 are very common in the I ist Iork Abbitt Crech dramuses Ahus come $/$ /l is the

 Itbocedius decuricus contribute to the reprodicetion in minor gunatios on drice or more open forest condations the totil understory corer of flors 4 and 10 is quitic high (59 and $86 r_{0}$ respectucls) and rich in everarecn consuments Mipur specics are shrubbs Cattanopers chigenphitl, and low shrubby or suffrutcesent cucratcem in
 Gultheive ot ttifolte and Volt rempertitens the well cyressed understors webe tition is 1 fencure of this communte it contrasts with the drice Abues concola, Proudotsura menzesatil hiphla modert communits discussed below Howcier a
 is not nearly as contmuous and conspucunus is in the Aboce comentor 1 ist $/$ detero pholla/Acoi Iaver comments Nucrthelcss sciend important apectas ore shired be

 cand al"'" and Padecelmer racemort in both spes

 subdomment minor or ibsent

 chenon is the W Whiphe modert: phise for thes species ofen becomes one of the myor domments of the re liecal understory flor
 plots δ and 10) in mins satce of the Abur concolor/tante bouc at associntion sub be is 1 hegher cuergrean uaderstors component then is foumd on sites of the Abur manfore complex (Nooncs wd Dumn 1970 Moonct 19(19)

 The lek of ing sesnificint understory coner results from the buildup wid accumula tion of conferous hiter

 or Pscudotrusa mon resu Itbocedrus decurrens/Arctorlaphiphos nat adensts community types in drier sites
 sexintion is represented by plots 2 and 9 located on shabb lithosols near ridge tope Abes concolor is absent or minor msted Paculotiag men acerl and I iboced, if de

 is churacteristicills open or semi of en
 duction Also the understors trece stritum matudes subafient momones of (at in 1

 fremontti) vire cacrercen selerophylls
 cone in that it supports vesetitive and topogrybice obsersumens mide in the field the

 1969) The second proup consists of the other four community typs deserilud med
 Djrness 1969)

miny species not found in the other communts ispes and absence of other specks found in these community types

Ihe Y ixas tends to seprotic the four communtry types associnted with the Mand Comfer zonc along 1 monseure fredient Λ samilir mossure fradient has beco de scribed in other mixal conifor or montine tye forested weas of southwestern Olcaon (Varing 1969) Whateqer 1960 West 1966) lhese sridents bue been designted is toportybic mosture gradients with the more mesic sites berng found in ravines and sheltered areas whise the more xeric ire found on open southwest ficing, slopes
 buteon At mans lociten it is possible to pass down slope from on Abues concolo,

 folit community ispe Howcior cation must be used in such gencribeotions the communty types infequently catcod untoterupted over freat expunces of the nitural vere Jhis fact coupled with the rughed topogerephy would make the assembling of 1 community ispe mp quite a formidable task
 Rescarch Notural Area

Conclusions

1 Oucr most of Abbot Crect Natural Area the forests will cacotuilly be dommated by ther concolon whose dense reproductoon is alreads Tlirent Ae high elcvitions

 and moder fresent erenls will become only 1 momor tree in tle ore the for se

 in the form of mesce forb communcics fleng the dade it the morth bound in
 muntes has hish floristic sumbrits to several forest types of the western hemper rone in the western (ascade Range of centril Orcgon (Dyrncss Irmklin and Moar 1972 Howk 1972) Howcior the remuming forcst ypes it Abbote (rech Reseorch Neural Area are more smalar to Chiforma Sierran forests Whate these tyes contum im portant (aseadion florisetic clemente thes nevertheless are claris of the Aber arneolen and Abuce mashifica rharteners eoncs is deseribed by Irwhinin and Dermes (190)

 (mild wet wenters and hot droughty summers) in the Cise ide R inge of whitern Orchon

Literature Cited

 Ior Serv 1 wific Norihucst Iorest R Rence I xperiment Setern 1 wreland Orcion 3 ip 1 my (Aproval ly Chicf of 15 J in 2 1) if)

 N(") lith xt 300) 11
 County Orabon Orcion Selic Unatisists Mi the is 10111

 0 (milli ()reton (0) 11
 Intoraters (orsallis Orcion

Hish C Mr 19 Uneron US lor Scrs

Otthell R 1972 An Anlsis of the Vebetmon of Allote (rach Nitural Arch () : 1

 lurina induce dreasht Bull Iorres Bor Clut 9 (5) 550555
 ercen aclerifinll shrube Tvol 21(9) 2) 303
 (U) (orl bur Misc Conl lnict Mal I 3 ? 5)
 Mert Portlon! Orcann $93(1 \mathrm{D}$

 Witce R(s)urces Bmol I 15) 111

 aks $1,11 \quad 17 \quad 975990$

Afoncer 30 279334

Maccucd Deccmber 2 1974
Acceptea for publicition Scpucmber 251975

1 Abbott Creek Research Natural Area Forest opening occupied by reproduction of Douglas-fir and sugar pine, frequent openings of this type in this Sierran-type mixed conifer forest provide sites for reproduction of less shade-tolerant tree species

FS, Oregon
R-6

ABBOTT CREEK RESEARCH NATURAL AMEA, ROGUE RIVER NATIONAL FOREJT, OREGON

1. General view of the upper part of the natural area which is dominated by mxed conifer forests of Douglas-fir, incense-cedar, grand fir, ana ponderosa pine

2 Small stand opening ath dense reproduction of Douglas-fır, grand fir and sugar pine Such opemings are typical of mature forests in the area and provide opportumties for deploay less tolerant species to reproduce and maintan n-themsitures_dep.ooy

a Checklist of the vascular plants in abbott creek research natural area oregon ${ }^{1}$

by
Rod Mitchell Colorado Women s College Denver Colorado \leftarrow ?

ABSTRACT

This paper is a checklist of 277 vascular plant taxa that have been collected or encountered in Abbott Creek Research Natural Area, Oregon a brief description of five forested and two nonforested vegetation types is included

KEYWORDS Vascular plants, checklists (vascular plants), Oregon (Abbott Creek Research Natural Area)

INTRODUCTION

Abbott Creek Research Natural Area is located 19 km (12 mlles) west of Crater Lake Natıonal Park in the Rogue River Natıonal Forest of southern Oregon (fig l) This Research Natural Area was established on November 18, 1946, as representative of the southwestern Oregon, Sierra-type mixed conifer forests and specifically because it contained excellent stands of sugar pine (Pinus lamoertiana) (Franklın et al 1972) The purpose of this note is to document the vascular flora of this Research Natural Area (RNA) to ald future scientific research (Franklin 1970, Moir 1972) and to complement a previous study of forest community composition in the Research Natural Area (Mitchell and Moır 1976)

Figure 1 --Location of Abbott Creek Research Natural Area

[^0]
STUDY AREA

Abbott Creek Research Natural Area is located in Douglas and Jackson Counties, and has a total area of 1076 ha (2,660 acres) Its western border, defined by the main branch of Abbott Creek, provides the easiest access to major portions of the area An unmaintained logging road parallels the southwestern boundary This road is reached from US Highway 26 via Forest Road 3047 (fig 2) The northern border is defined by a ridge between the Rogue and Ump qua River draınages The main access to this ridge is via trail remnants from Abbott Butte fire lookout, served by Forest Road 2923 The eastern edge of the area generally follows the Golden Stairs Trail, accessible at its southern end by Forest Road 3017 and by Forest Road 3016 at a more northern point There are no maintained trails or roads within the RNA

Figure 2 --Features of the Abbott Creek Research Natural Area and vicinity

Physiography and Geology

The topography is quite steep, much of the area consists of slopes of 25 percent or more Gentler terrain is found near Abbott Creek and on some high elevation benches south of Abbott Butte and between Abbott and Falcon Buttes Abbott Butte is the highest point ($1869 \mathrm{~m}, 6,128 \mathrm{ft}$) in the Research Natural Area the lowest point ($1006 \mathrm{~m}, 3,300 \mathrm{ft}$) is located in the southwest of the RNA

The entire area is volcanic in origin Soils belong to the Freezener-Coyata soil series (Power and Simonson 1969) Typically the soils are acid in reaction and well drained with dark reddish-brown, friable, loam surface layers Rock fragments range from abundant to less than 30 percent by volume

Climate

A modified maritime climate characterizes the Research Natural Area Most of the precipitation results from low pressure systems that move eastward across western Oregon from the Pacific Ocean During the summers, this dominant climatic feature is modified by high pressure systems that shift fronts northward, resulting in clear, dry weather This phenomenon results in cool, wet winters and warm, dry summers

Grazıng

The Research Natural Area lies within the Woodrull Cattle and Horse Allotment and presently experiences light grazing on its eastern border 2 The USDA Forest Service has issued permits in the area since 1923 As early as the 1860's settlers used the area for grazing it can be speculated that this grazing has affected the present flora, both through the introduction of species not originally found in the area and through a disproportionate amount of foraging on some of the original species

VEGETATION TYPES

In the forested locations, 119 reconnaissance plots (Franklin et al 1970) were used to sample vegetation (Mitchell 1972) and develop a classificatıon These included transects to determine the percentage of ground cover and frequency of understory species (Daubenmire 1968) Five major forest and two nonforested vegetatıon types have been recognızed (Mıtchell and Moır 1976) About 80 percent of the Research Natural Area is forested

1 The Ables magnifica vegetation type located at higher elevations in the northwest corner of the RNA is floristically distinct and belongs to the Abıes magnıfica var shastensis Zone (Dennis 1959, Whittaker 1960, Franklin and Dyrness 1973) The overstory consists of Abıes magnıfica, Libocedrus decurrens, Abıes concolor and Tsuga mertensiana The understory averages over 80 -percent cover and is dominated by Adenocaulon bicolor, Bromus vulgaris, Cırcaea alpına, Erıgeron aliceae, Montıa sıbırıca Osmorhıza chılensıs, Trientalis latıfolıa, Rıbes viscosıssımum, Rubus parviflorus Smılacına sessilifolia Vancouveria hexandra and Vicia americana which occur in over 67 percent of the locations sampied The ecoclass is CR F9 (Hall 1978)

2 The Abies concolor-Tsuga heterophylla/Acer circinatum-Taxus brevifolıa vegetation type is on the moist end of the gradient that includes the three other forested vegetation types that are part of the Mixed-Conifer Zone as it occurs in the RNA (Mitchell and Moir 1976) This vegetation type is found at the bottom of the major drainages, usually where there is a permanent streamflow Pseudotsuga menzıesıı, Abıes concolor, Tsuga heterophylla Pinus lambertiana and Pinus monticola comprise the overstory The shrub layer is very well developed Acer circinatum, Taxus brevifolia, Castanopsis chrysophylla, Corylus cornuta, and Cornus nuttallil are the most important representatives The understory is quite dense and is dominated by Achlys triphylla, Berberis nervosa Chimaphila umbellata, Linnaea borealis Pachystıma myrsinites Trientalıs latifolıa, Vaccinıum membranaceum, and Whipplea modesta, all of which occurred in over 78 percent of the locations sampled The ecoclass is CH 32 (Hall 1978)

[^1]3 The Abies concolor/Linnaea borealis vegetation type occurs on mesic slopes at lower elevations in the RNA The overstory consists of Pseudotsuga menziesıı, Abies concolor, and Libocedrus decurrens The understory of this vegetation type is very well developed and is dominated by evergreen species The major understory species are Achlys triphylla, Berberis nervosa Chımaphıla umbellata, Corylus cornuta, Hıeracıum albıflorum, Linnaea borealis, Trıentalıs latıfolıa, and Whipplea modesta which occur in over 71 percent of the locations sampled The ecoclass is CW F3 (Hall 1978)

4 The Abıes concolor-Pseudotsuga menziesil/Whipplea modesta vegetation type is located on dry midslopes to upper slopes that face south or west The tree component is dominated by Pseudotsuga menziesil and Libocedrus decurrens The understory is poorly developed, often with less than 10 -percent total cover Castanopsis chrysophylla, Amelanchıer alnıfolıa, and Garrya fremontıı occasionally provide a shrub layer Whıpplea modesta is about the only understory plant with significant cover values in most locations Berberis nervosa Chımaphıla umbellata, Hıeracıum albıflorum Irıs chrysophylla, and Trientalis latıfolia are found in 75 percent of the locations sampled The ecoclass is CW S6 (Hall 1978)

5 The Pseudotsuga menziesil-Lıbocedrus decurrens/Arctostaphylos nevadensis vegetation type is found mainly on south- and west-facing slopes near ridgetops where there are poorly developed slabby lithosols The overstory is open and dominated by Pseudotsuga menziesil and Libocedrus decurrens Pinus lambertiana is also present The shrub layer is quite well developed and dominated by Arctostaphylos nevadensis, Castanopsis chrysophylla Ceanothus prostratus, and Garrya fremontil, all of which occur in 63 percent or more of the sample locations The nonshrub component of the understory is quite sparse and is represented by Arenaria macrophylla, Chımaphıla umbellata, Hıeracıum albiflorum, Trientalıs latıfolıa and Whipplea modesta which are present in 81 percent or more of the locations sampled The ecoclass is CD C3 (Hall 1978)

6 A nonforested community occupies dry, rocky sites at midelevations on the western edge of the RNA This is a very drought resistant and heterogeneous vegetation type Most of the species are not found on other sites in the RNA Brodıaea pulchella, Madıa mınıma, Perıderıdıa bolanderı, and Stıpa occidentalıs are the only species that occur in over 30 percent of the locations sampled, the total cover never reaches 50 percent The ecoclass is GB 29 (Hall 1978)

7 There are several meadows on the northern edge of the Research Natural Area between Abbott and Falcon Buttes These meadows continue north of the RNA at higher elevations Snowpack remains as late as June and is followed by rapid growth of dense herbaceous vegetation Bromus vulgaris, Erigeron alıceae Heracleum sphondylium Hydrophyllum fendleri Lonicera conjugialıs, Melıca spectabılıs, Osmorhıza occidentalıs, Pterıdıum aquilınum, Salıx scouleriana, and Veratrum viride are dominant members of this vegetation type There is evidence that these meadows are being invaded by trees, especially Libocedrus decurrens The ecoclass is FW 19 (Hall 1978)

CHECKLIST

Methodology

Specimens were collected of all vascular plants found within the Research Natural Area during the summers of 1971, 1972, and 1973 All specimens were verified by $F J$ Hermann Curator of the USDA Forest Service Herbarium,

Fort Collins, Colorado, or by K L Chambers, Curator, Oregon State University Herbarium, Corvallis, Oregon Voucher specimens were deposited in both herbaria

The checklist of plants is arranged in alphabetical order by family The nomenclature follows Peck (1961) but in several instances is updated by Hitchoock and Cronquist (1973) The common names follow various authorities, primarily Franklin and Dyrness (1973) and Garrison et al (1976) Voucher specimens of most species are on file in the USDA Forest Service Herbarium, Rocky Mountaın Forest and Range Experıment Statıon, Fort Collıns, Colorado, or the Oregon State University Herbarium, Corvallis, Oregon

Most species are given abundance ratings by vegetation type Some species, however, occupy highly specialized habitats and cannot be related to the seven types

The checklist of the vascular plants indicate vegetation types where taxa are found voucher specimen numbers, and the herbaria where deposited The abbreviatıons for vegetation types are

S -- Abıes magnıfica (Shasta red fir)
H -- Ables concolor-Tsuga heterophylla/Acer circinatum (western hemlock)
W -- Abies concolor/Linnaea borealis (white fir)
D -- Abies concolor-Pseudotsuga menzıesıl/Whıpplea modesta (Douglas-fir)
| -- Pseudotsuga menzıesıı-Lıbocedrus decurrens/Arctostaphylos nevadensıs (Incense-cedar)
R -- Drought-resistant, heterogeneous species
M -- Herbaceous meadow
The abbreviations for abundance scale are
A -- Abundant
C -- Common
R -- Rare
Abbreviations for the herbaria where voucher specimens are located are
0 -- Oregon State University Herbarium, Corvallis, Oregon
F -- USDA Forest Service Herbarıum, Rocky Mountain Forest and Range Experıment Station, Fort Collıns, Colorado
Herbaria

ACERACEAE
 Species

ACERACEAE Acer circınatum Pursh (vine maple)
Acer macrophyllum Pursh (bigleaf maple)
APOCYNACEAEApocynum androsaemıfolıum L (spreading dogbane)
Asarum caudatum Lindl (wild ginger)
BERBERIDACEAE Achlys triphylla (Sm) DC (deerfoot vanillaleaf)
Vancouveria hexandra (Hook) Moor ε Dec (white inside-out-flower)
BETULACEAE
Alnus sinuata (Regel) Rydb (Sitka alder)
Corylus cornuta var Calıfornica (DC) Sharp (Calıfornia hazel)
BORAGINACEAE
Cryptantha affinıs (Gray) Greene (slender cryptantha)
Cynoglossum grande Dougl ex Lehm (great hound's tongue)
Hackelia jessicae (Mcrregor) Brand (Jessica stickweed)
Mertensia cılıata (Torr) G Don (broadleaved lungwort)
Campanula prenanthoıdes Dur (Californıa harebell)
CAPRIFOLIACEAE
Linnaea borealıs var longıflora Torr (twinflower)

Species

CORNACEAE

Cornus nuttallı1 T \& (Pacific dogwood)
Sedum oregonense (Wats) Peck (creamy stonecrop)
CRUCIFERAE TI
Arabis holboellil var retrofracta (Grah) Rydb
Arabis mıcrophylla Nutt (littleleaf rockcress) Athysanus pusillus (Hook) Greene (sandweed) Descurainia richardsonil (Sweet) Schulz
(western tansy mustard)
CUCURBITACEAE (T \&) Howell (Oregon Marah oregonus
wild cucumber) \& C) Howell (oregon
CUPRESSACEAE
Libocedrus decurrens Torr (Incense-cedar)
Carex bolanderi Olney (Bolander sedge)

Species

EQUISETACEAE

Equisetum arvense L (common horsetall)
Arctostaphylos nevadensis Gray (pine-mat
Arctostaphylos patula Greene (green manzanıta) Chımaphıla menziesıı (R Br) Spreng
(little prince's pıne)
Chımaphıla umbellata (L) Bart
Gaultheria ovatifolia Gray (slender gautherıa) Pterospora andromedea Nutt (pine drops) Pyrola aphylla Smith (leafless pyrola) Pyrola asarıfolia Michx (large pyrola)
Pyrola dentata Smith
Pyrola pıcta Smith (whitevein pyrola) Pyrola asarıfolia Michx (large pyrola)
Pyrola dentata Smith
Pyrola pıcta Smith (whitevein pyrola) Pyrola secunda L (one-sided wintergreen) Rhododendron macrophyllum G Don (Pacific rhododendron) Vaccinıum membranaceum Hook (big huckleberry) Sarcodes sanguinea Torr FAGACEAE
Castanopsis chrysophylla (Dougl) A DC
(golden chinkapın)

[^2]| Herbaria |
| :---: |
| $0 / F$ |
| 0 |
| 0 |
| 0 |
| 0 |
| $0 / F$ |
| |
| $0 / F$ |
| 0 |
| 0 |
| $0 / F$ |
| 0 |

Species
Phacelıa hastata Lehm (whiteleaved phacelıa)

IRIDACEAE

Iris chrysophylla Howell (slender-tubed iris)
JUNCACEAE
Juncus orthophyllus Cov (straight-leaved rush)
Luzula comosa E Mey (hary woodrush) (E) (
LABIATAE
Agastache urticifolıa (Benth) Kuntze (nettle-leaved
Monardella odoratissima Benth (western balm) Scutellaria antirrhinoıdes Benth (snapdragon
Stachys cooleyae Heller (Cooley's hedge nettle) Stachys rigida Benth (rigid hedge nettle) Lathyrus polyphyllus $T \in G$ (Pacıfic peavine) (reen Lupınus albıfrons Lindl (white-leaved lupıne) Lupinus argenteus Pursh (sivery lupine) upinus latifolius Agardh (broadieaf lup laxiflorus Lindl (spur lupine) Vicıa americana var villosa (Kell) F J Herm (American vetch)
LILIACEAE
Allıum siskıyounense Owns (Siskiyou onion)
Brodlaea pulchella (Salısb) Greene (purplehead brodiaea)
Calochortus elegans Pursh (elegant
mariposa lily)

Herbaria
 Voucher number

PINACEAE
Species
PINACEAE Species
Abıes concolor Lindl ε Gord (white fir)
Abıes magnıfica var shastensis Lemm
\quad (Shasta red fir)
Pınus lambertiana Dougl (sugar pine)
Pınus monticola Dougl (western white pine)
Pınus ponderosa Dougl (ponderosa pıne)
Pseudotsuga menziesıı (Mırb) Franco (Douglas-fir)
Tsuga heterophylla (Raf) Sarg (western hemlock)
POLEMONIACEAE
Collomıa grandıflora Dougl (large-flowered
collomıa)
Collomia heterophylla Hook (varied-leaved
collomia)
Gllıa aggregata (Pursh) Spreng (scarlet gilıa)
Linanthus harknessil (Curran) Greene (harkness
linanthus)
Navarretıa dıvarıcata (Torr) Greene (short-stemmed
navarretia)
Phlox adsurgens Gray (woodland phlox)
Phlox diffusa Benth (sens E Wherry)
(spreading phlox)
Polemonium pulcherrimum Hook (showy polemonium)
POLYGONACEAE
POLYGONACEAE
Erıogonum compositum Benth var compositum
(northern buckwheat)
Erıogonum nudum Benth (naked eriogonum)
Eriogonum umbellatum Torr var umbellatu Eriogonum umbellatum Torr var umbellatum
Polygonum bistortoides Pursh (American bistort) Polygonum cascadense W H Baker (Cascade knotweed) Polygonum majus (Meisn) Piper (wiry knotweed) Rumex acetosella L (sheep sorrel)

Herbaria

RUB IACEAE

Galıum oreganum Britt (Oregon bedstraw)
Galıum triflorum Michx (sweetscented bedstraw) Kelloggıa galıoıdes Torr (kelloggıa)

SALICACEAE

Populus tremuloides Michx (quaking aspen) Salıx scouleriana Barratt (Scouler's willow) SAXIFRAGACEAE
Boykinia major Gray (large-flowered boykinıa) IIthophragma sp cf L tenella Nutt

Tellıma grandiflora (Pursh) Dougl (Alaska
fringecup)
Tıarella unifoliata Hook (western coolwort) SCROPHULAR IACEAE

Castilleja minıata Hook (scarlet paintbrush) castilleja pruinosa Fern (frosted paintbrush)

- ılinsıa parviflora Lindl (littleflower collinsia)
Herbaria

Voucher number

			$\frac{N}{m}$			$\stackrel{ \pm}{m}$		-	N
	ふ̄́ñ	¢	oin in	N	=	$\text { on}^{\circ}$	$\begin{aligned} & \text { on } \\ & \mathrm{m} \end{aligned}$	-	$\underset{\sim}{\operatorname{oin}} \underset{N}{ }$

Spe
Namulus breweri (Greene) Rydb (Brewer monkeyflower)
Mımulus guttatus DC (common monkeyflower)
Mımulus pulsiferae Gray
Mımulus tilingil Regel (clustered monkeyflower)
Orthocarpus imbricatus Wats (mountain owlclover)
Pedıcularis bracteosa Benth (bracted pedicularis)
Pedicularis racemosa Hook (sickletop pedicularis)
Penstemon davidsonil (Greene) var davidsonıl Piper
(Davidson penstemon)
Penstemon deustus Lindl (scabland penstemon)
Sunthyris renıformis (Dougl) Benth (snowqueen)
TAXACEAE
Taxus brevifolia Nutt (western yew) TAXACEAE
Taxus bre
UMBELLIFERAE Heracleum sphondylıum L (cowparsnip)
Lıgusticum apıifolıum (Nutt) Gray (parsleyleaf
\quad licoriceroot) licoriceroot)
Ligusticum grayı
Ligusticum grayı $C \in \mathbb{R}$ (Gray's lovage)
Lomatium nudicaule (Pursh) C \& R (bares
Lomatıum nudicaule (Pursh) $C \in R$ (barestem
lomatıum) Lomatıum tri
lomatıum)
Osmorhiza ch Osmorhıza chılensis H \& A (mountaın sweetroot)
Osmorhıza occidentalıs (Nutt) Torr (sweet anıse) Osmorhiza occidentalıs (Nutt) Torr (sweet anise)
Oxypolis occidentalıs C \mathcal{R} (western oxypolıs) Oxypolis occidentalıs C \& R (western oxypolis)
Perıderıdia bolanderı (Gray) Nels \& Macbr
erıderıdıa bolanderı (Gray) Nels \& Macbr
(mountaın false caraway)
Sanıcula graveolens Poepp ex DC (Sierra snake-root) Sphenosciadıum capıtellatum Gray (range wolleyheadparsnip)
VALERIANACEAE
Valerıana sitchensis Bong (Sitka valerian)
VIOLACEAE
Viola glabella Nutt (wood violet)
Viola sheltonil Torr (Shelton violet)

LITERATURE CITED

Daubenmıre, R
1968 Plant communities, a textbook of plant synecology 300 p Harper and Row, New York
Dennis, L R J
1959 A taxonomic study of the vascular flora of Ashland Peak, Jackson County, Oregon M A thesis Oreg State Univ, Corvallis, 144 p
Franklın, J F
1970 Research Natural Areas in the Pacific Northwest Mazama 52(13) 30-34
Franklın, J F and $C T$ Dyrness
1973 Natural vegetation of Oregon and Washington USDA For Serv Gen Tech Rep PNW-8, 417 p , lllus Pac Northwest For and Range Exp Stn , Portland, Oreg
Franklin, J F C T Dyrness, and W H Moir
1970 A reconnaissance method of forest site classification Shinrin Richi 12 1-14 (with Japanese summary)
Franklın, J F , F C Hall, C T Dyrness, and C Maser
1972 Federal Research Natural Areas in Oregon and Washington Pac Northwest For and Range Exp Stn , USDA For Serv Portland, Oreg
Garrison, G A J M Skovlın, C E Poulton, and A H Winward
1976 Northwest plant names and symbols for ecosystem inventory and analysis
4th ed USDA For Serv Gen Tech Rep PNW-46, 263 p Pac Northwest For and Range Exp Stn , Portland, Oreg
Hall, F C
1978 Pacific Northwest ecoclass vegetation identification, concepts and codes USDA For Serv Pac Northwest Reg, R-6 Reg Guide 1-3
Hitchcock, C L, and A Cronquist
1973 Flora of the Pacıfic Northwest Univ Wash Press, Seattle
Mitchell, R J
1972 An analysis of the vegetatıon of Abbott Creek Natural Area, Oregon Ph D thesis Oreg State Univ, Corvallis
Mitchell, R J, and W Moir
1976 Vegetatıon of the Abbott Creek Research Natural Area, Oregon Northwest Scl 50(1) 42-58
Molr, W H
1972 Natural areas Scıence 177(4047) 396-400
Peck, M E
1961 A manual of the higher plants of Oregon 2 d ed 936 p Binford and Mort, Portland, Oreg
Power, W E , and G H Simonson
1969 Oregon long range requirements for water General solls map report with irrigable areas - Rogue Draınage Basin Portland, Oreg (State Water Resour Board, 1-15) 4 p
Whittaker, R H
1960 Vegetation of the Siskiyou Mountaıns, Oregon and Calıfornia Ecol Monogr 30 279-338

The mission of the PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION is to provide the knowl edge technology and alternatives for present and future protection management and use of forest range and related environments

Within this overall mission the Station conducts and stımulates research to facilitate and to accelerate progress toward the following goals

1 Providing safe and efficient technology for inventory protection and use of resources

2 Developing and evaluating alternative methods and levels of resource management

3 Achieving optimum sustained resource productivity consistent with maintaining a high quality forest environment

The area of research encompasses Oregon Washington Alaska and in some cases California Hawall the Western States and the Nation Results of the research are made avalable promptly Project headquarters are at

Anchorage Alaska	La Grande Oregon
Faırbanks Alaska	Portland Oregon
Juneau Alaska	Olympıa Washıngton
Bend Oregon	Seattle Washington
Corvallis Oregon	Wenatchee Washington

Malling address Pacific Northwest Forest and Range
Experiment Station
809 N E 6th Ave
Portland Oregon 97232

The FOREST SERVICE of the US Department of Agriculture is dedicated to the principle of multiplecuse management of the Nation s forest resources for sustained yields of wood water vorage wivildufe and recreation Through forestry research cooperation with the States and private forest owners and management of the National Forests and National Grasslands it strives - as directed bỹ̈ Congrêss - to provide increasingly greater service to a growing Nation
The US Department of Agricultưre is an Equal opportunity Employer Applicants for all Department programs will fespryén equal consideration without regard to age race color, sex religion or national origin
co 5 en reigion or

IN NATIONAL BIOLOGICAL PROGRAMME
SECTION CT CONSERVATION OF TERRESTRIAL BIOLOGICAL COMMUNITIES
CHECK SHEET (Mark VII) FOR SURVEY OF IBP AREAS*
To be completed with reference to the GUIDE TO THE CHECK SHEET

2 Country NitE Smiths oF Amghean

State or Province OREGON County JAGRSON DPUGQAS	
(State or Province	County

Administration

National 1 Official category FEDFRAL REsffirch NATHRAL AREA
2 Address of administration
Pacific Northwest Forest \&
Range Experiment Station
PO Box 3141
Portland, Oregon 97208

International Class

3

Included in UN List	Rejected from $U N$ List	Area with formal conservation status	No formal cons status
(A)	(B)	(C)	(D)

Characteristics of IBP Area*
1 Surface area (state units of measurement)
1,077 NA
2 Altitude (state units of measurement) Maximum 1,869 M
Minimum 1,000 M

Climate

Nearest climatological station
1 Name PRDSPERT, DREGRN
2 Climatological station on IBP Area*? Yes No
3 If (2) not distance from edge of IBP Area* (state units) 19 RM
4 Direction from IBP Area* SE
5 Additional data sheet attached) Yes \boldsymbol{V} No

Vegetation and Soil
1
Vegetation

	Vegetation Code					Plant communities (give usual name using full Latin names of a species where applicable)	Area (state units)
		$\begin{aligned} & \tilde{\sim} \\ & \tilde{U} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { 訁े } \end{aligned}$				
1	1	A	1	7	a	Psevoorsmen manzicsul- PINUS RAmABRE IANA-ABIES CONGOLOR	8324
2	1	8	1	4	a	Coanothus veluthrus - Aretogtuphylos \qquad patula-Garmyafremontie	
3	1	c	1	2	a	Ccamothus prostratus-Archostaphylos uca-cresh	$\begin{array}{r} 245 \\ M A n \\ \hline \end{array}$
4	1	M	2			Gramoinklae	
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

Please give information about further communities on a separate sheet

8 Similar Communities in Country (or State)

	Protected					Protected and Unprotected				
				00 = 0. 0 0						
1		V				\checkmark			\checkmark	
2		\checkmark				\checkmark				
3		\checkmark				\checkmark				
4			/			\checkmark			\checkmark	
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										

Landscape

1 General Landscape (give brief description) STEGP MOUNTAIN DRAMAAGK WITH FREGUFNT SIPE RIPGES AND ROMMAN RACR aUTCRARS

2 Relief Type
Flat
$\begin{array}{lc}\text { Undulating } & \text { Hilly } \\ \text { (0) } 200 \mathrm{~m} & 200 \mathrm{lo00m}\end{array}$
Mountaınous \%

Relif Type	(0) 200 m	2001000 m	> 1000	
Sharply dissected			100	100
Gently dissected				
Incised				
Skeletonised				
\%			100	100\%

3 Special landscape features (list)

Coastline of IBP Area*

NONE

1 Protected bays and/or inlets
Many \square Few \square None \square
2 Substratum \% of coast

3 Physıography / of coast

Cliffed	Sloping	Flat

4 Special Coastal Features (list)

5 Tide Maximum range (state units of measurement)
6 Total length of coastline

Freshwater within IBP Area*

1

2 Standing Water

3 Running Water

4 Special freshwater features

Salt and Brackish Water within IBP Area* NONE

Adjacent Water Bodies (not within IBP Area*)
1 Fresh \square Lake \square River \square Stream \square

2 Salt and Brackısh

Estuary	Salt lake	Salt pool	Lagoon	Ocean		

15 Exceptional Interest of IBP Area* List items and salient facts (eg botanical ornithological teaching area site of classic research since 1930)

16(1) Significant Human Impact General Check one line
(2) Particular types of significant human impact Types of human impact additional to the 16 types listed should be entered in the vacant rows Where the impact does not operate today but has operated in the past check past Where it does operate now but did not operate before 1900 check Present only Where a present day impact operated before 1900 check both past and present For all types of present impact check off the trend Only check increasing or decreasing if this is certain otherwlse check no certain change
(3) Additional details on each type of impact attached? Yes/No Check

17 Conservation Status Refers to human influence on material objects within the IBP Area* This influence may be partial in space time or manner
Protection (from exploitation) Refers to current legal position regarding deleterious influence of man If practice falls significantly short of theory this fact should be noted in 19
Utilisation Restrained exploitation to take a long term crop The extent and period of utilisation may be legally limited (Controlled) or not (Uncontrolled)
Conservation Management Utilisation with the primary object of maintaining restoring or creating an ecosystem which has some special interest to biologists Status refers to bio logical status which may be equated with vegctation type for the purposes of this survey Permitted Research Observational research does not interfere with the ecosystem Ex perimental research usually involves interference of some sort

18(1) List major bıological/geographical references for the IBP Area* Attach list and check
(2) List main maps available for the IBP Area* Attach list and check
(3) Aerial photographs for the IBP Area* available? Check one space

19 Other relevant information Can also be used when there is insufficient space for the answer to another question
Additional Information
In a number of sections surveyors are asked to attach additional information when this is avallable on separate sheets These sections are
2(4) Map of IBP Area*
6(5) Climatological Data
16(3) Significant Human Impact Explanatory notes
18(1) Major bıological/geographical references
(2) List of main maps available

Data Centre

Completed Check Sheets should be returned to the national organiser or direct to the Data Centre whose address is

IBP/CT Survey
Biological Records Centre
The Nature Conservancy
Monks Wood Experimental Station
Abbots Ripton
Huntingdon England

Outstandıng Floral and Faunal Features

1 None

2 Fauna

	$\begin{aligned} & \grave{N} \\ & \stackrel{y}{n} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \tilde{U} \\ & \vdots \\ & \ddot{U} \end{aligned}$	Abundance of individuals									
Mammalia											
Aves											
Reptilia											
Amphibia											
Pisces											
Insecta											

3 Names of main threatened endemic relict and rare species

> Sloping Cliffed coastlines in which no part is inaccessible to land anımals
> Flat Coastlines which lack cliffs and sloping cliffs
> (4) Special coastal features should be listed accordingly to widely terms (eg reefs sand bars)
> (5) Tide Maxımum Range State units
> (6) Total length of coastline Check appropriate value

11 Freshwater within IBP Area*
(1) (2) and (3) Check in the spaces the features which are present Surveyors may insert indications of abundance eg many few etc provided it is clear which features are present and which absent
Definitions
General
All types of freshwater
Standing Water not flowing continuously in a definite direction
Running Water flowing in a definite direction
Swamp A lake pond or other site of such small depth that it is occupied \pm com pletely by emergent vegetation
Pond A body of standing water whose area of open water is less than $10000 \mathrm{~m}^{2}$
Lake A body of standing water whose area of open water is greater than $10000 \mathrm{~m}^{2}$
Spring A site at which water is issuing through a natural opening in such quantity as to form an appreciable current A hot spring has an average temperature more than $10^{\circ} \mathrm{C}$ above the yearly mean for the surrounding air
Stream A watercourse or part of a watercourse whose mean width is less than 5 m
River
Permanent
A watercourse or part of a watercourse whose mean width is greater than 5 m Never or very rarely disappears All other situations are regarded as inter mittent
Productive Eutrophic waters and those with relatively high biological productivity which are morphometrically oligotrophic
Unproductive Other oligotrophic waters and those of relatively low biological productivity
(4) Special freshwater features should be listed according to widely known terms (eg rapids geysers seasonally inundated land)

12 Salt and Brackısh Water withın IBP Area* Check
13 Adjacent water bodies, ie those whose margins form part or all of the boundary of the IBP Area* which are therefore not within the IBP Area*

Definitions as follows
Freshwater Salınity generally within the range 15300 p p m
Salt and
Brackish water Salinity above the normal range of freshwater
Ocean Should only be used for the interconnected oceans
Salt Lake A body of standing salt water whose area of open water is greater than $10000 \mathrm{~m}^{2}$ standing salt water whose area of open water is greater than
Salt Pool A body of standing salt or brackish water whose area of open water is less than $10000 \mathrm{~m}^{2}$
Lagoon Shallow lake formed in association with coral
Estuary Tidnl portion of a river mouth
14(1) Outstanding Floral and Faunal Features Check if none known
(2) and (4) Only the presence of outstanding features should be noted by checking the appropriate box No other information is required here we do not want for example the number of bird species present inserted under Aves - species diversity because this is not in itself an indication that this number is outstanding Columns have been left vacant for additional types of outstanding feature and additional taxonomic groups may be added in the vacant rows The vacant rows may also be used to give more precise data for the groups listed eg if the outstanding interest centres on the Carnivora of the Mammalia Carnivora may be inserted in a vacant row Always designate taxonomic groups by their Latin name
(3) and (5) Names of main threatened, endemic, relict and rare species List the species by their Latin names Vernacular names in addition are welcome but not obligatory

4 Flora

5 Names of main threatened endemic relict and rare species

7(2) Soll

Soll Type Enter the code number for the soll type which occurs under each Community These can be identified in Appendix 2 Where more than one soll type occurs under one Community either the definition of the Community should be revised or an explanatory note should be added under Other notes
Other Notes Sub types present should be mentioned together with short descriptions of significant features eg colour humus content depth
8 Similar Communities in Country (or State)
This Section will normally refer to the entire Country but in the case of large countries (Australia Brazil Canada China India USA USSR) it should refer to states or provinces (primary administrative subdivisions) All Communities should be considered here --in exactly the same order as in 7 using the Community Reference Number for cross reference Insert up to four checks in each row
Protected refers to sites of A B and C (see 4(3) above)
Protected and Unprotected refers to all sites within the Country (or State)
None known The Community does not occur elsewhere in the country/state
Infrequent Other examples of the Community exist in the country/state but the loss of any one of them would be a grave depletion of its type
Abundant Other examples of the Community are sufficiently common and widespread that the loss of any one of them would not be a significant depletion of its type
Decreasing/Increasing Insert a check only when the change observed appears to be leading to a permanent change in the status of the Community

9(1) General Landscape Describe in less than 50 words Confine description to geomorphological features It is permissible to consider land outside the IBP Area* (see Part 3)
(2) Relief Type Check off type(s) present It is possible to consider land outside the IBP Area* (see Part 3)
Altitudinal range divided into four classes of which the lowest is flat in which there is very little variation in altitude
Erosion Types may be illustrated as follows

(3) Special Landscape Features should be listed according to widely known terms (eg cliff ice fields dunes recent vulcanism) Interpret special liberally

10(1) Protected Bays and Inlets Many/Few/None Check
(2) Substratum Insert approximate percentage value for the length of coast occupied by each type of substratum it is possible for the total to exceed 100% Definitions are as follows Rock Fixed stable unweathered rock
Beach Mobile or potentially mobile material of which the particle size ranges from very large (boulder) to minute (mud)
(3) Physiography Insert approximate percentage value for the length of coast occupied by each type These values should total 100%
Definitions are as follows
Cliffed Wholly or partially vertical with at least some part inaccessible to land animals

Sıgnıficant Human Impact
1 General None in entire IBP Area*
None in part of IBP Area* Impact on entire IBP Area*

2 Particular

			Trend			
				®00		
Cultivation						
Draınage						
Other soil disturbance						
Grazing		V			\checkmark	
Selective flora disturbance						
Logging	V			\checkmark		
Plantation						
Huntıng						\checkmark
Removal of predators		\checkmark				\checkmark
Pesticides						
Introductions - plants						
Introductions - anımals						
Fire	\checkmark			\checkmark		
Permanent habitation						
Recreation and tourism						
Research						

3 Additional details on each type of impact attached?
(2) Name of IBP Subdivision To be used only when the IBP Area is divided into two or more IBP Subdivisions IBP Subdivisions for which there is no suitable name should be given a reference letter ($a \operatorname{b} c \quad$ etc) thus distinguishing them from other IBP Subdivisions in the same IBP Area This question should only be left blank if the Check Sheet refers to an IBP Area
(3) Map of IBP Area* showing boundaries attached? Yes/No Check
(4) Sketch map of IBP Area* This should show

- the shape of the IBP Area*
- its relation to compass directions
-boundaries common with the boundary of the IBP Area (for IBP Subdivisions only)
- major features of the land form and vegetation (eg peaks rivers woods etc)
- sites of field stations and other permanent habitations

3(1) Latıtude and Long tude Delete the N or S E or W which does not apply
(2) Country, State or Province, County Insert names of administrative areas in which the IBP Area* is situated The following levels are recognised

- National or Territorial embracing the whole contiguous area under one political sovereignty (Country)
- Regional or Provincial units intermediate between national and local levels (State or Province)
- Local eg county, parish commune gemeinde etc

Spaces are provided for IBP Areas* which overlap Province or County boundaries
4(1) Natıonal Category, eg National Park Strict Nature Reserve etc
(2) Address of Administration responsible for the IBP Area* Full postal address
(3) International Class The following four classes have been adopted Check under the appropriate class
Class A Included in UN List
Class B Considered for inclusion in UN List but rejected These sites are mentioned in Chapter V of the UN List
Class C Other sites at present protected
Class D Unprotected sites of interest to conservationists and biologists
5(1) Surface area, may be inserted in any units but please state units
(2) Altitude Maxımum and Mınımum Please state units used

6(1) Name of Nearest Clımatological Station As used in publications of national climatological
organisations
(2) Climatological Station on IBP Area* Yes/No Check
(3) Distance from edge of IBP Area* if outside State units
(4) Direction from IBP Area* Insert compass direction from centre of IBP Area* Use 16 point compass notation (N NNE NE NNW) or degrees ($0^{\circ} 10^{\circ} \quad 350^{\circ}$)
(5) Additional data sheet attached? Yes/No Check

7(1) Vegetation
Plant Communities List these by their usual names using Latin names for all species mentioned Space is provided for 20 Communities further Communities should be listed on a separate sheet There is no restriction on the methods by which Communities may be defined so long as the Communities so formed can be easily recognised by local scientists Community Reference Numbers are provided to facilitate cross reference between 7(1) 7(2) and 8
Vegetation Code The Formation (and sub formation) to which each Community belongs should be entered These Formations (and sub formations) may be identified in Appendix il A key is provided to facilitate identification Enter only the code numbers for each Forma tion (and sub formation) placing one digit in each square
Area of each Community should be entered to maximum available accuracy

References

1 List major biological/geographical references for the IBP Area
Sheet attached' Yes No
2 List main maps available for the IBP Area
List attached' Yes
No
3 Aerial photographs for the IBP Area available'
For whole area
For part of area
None

gUide to the check sheet

by G F Peterken

PART FOUR

FIELD INSTRUCTIONS

This part is designed to assist the surveyor to fill in the Check Sheet and thereby facilitate the task of the Data Centre in transferring the contents of each Check Sheet to the computer tape it contains all definitions and instructions necessary for completing the Check Sheet except the classi fications of plant formations and sols which are presented in Appendices 1 and 2 respectively Together with these appendices it can be used in isolation from the remainder of the Guide and is therefore suitable for translation in those countries where it is not possible to translate the entire Guide Previous parts explain the purpose and objectives of the survey (Part 1) the selection of sites (Part 2) and the meaning and purpose of each question on the Check Sheet (Part 3) Following this part are four appendices dealing with the classification of Plant Formations classification of soils the Geocode and an example of a completed Check Sheet

Incomplete Information

It is likely that for many IBP Areas* the surveyor will not have enough information to complete every question To a limited extent this does not matter for even incomplete returns will contain valuable information Nevertheless there is a minimum number of sections which must be com pleted before a returned Check Sheet can be accepted as adequate Sections 1, 2, 3, 4, 5, and 7(1) must be completed before it is worth sending in a Check Sheet to the Data Centre

A returned Check Sheet containing only the bare minimum of information will possess only limited worth In practice it is expected that for most IBP Areas* much more information will be available any ecologist reasonably familiar with an IBP Area* should have no difficulty in answering Sections $67(2) 910 \quad 11 \quad 12$ and 13 in addition to those listed above The remaining Sections $8 \quad 14 \quad 15 \quad 16 \quad 17$ and 18 -ask for more detailed information which may not be readily available Since these later sections largely correspond with the conservation content of the Check Sheet it I hoped that surveyors will make every effort to obtain the additional information necessary to com plete the Check Sheet As the number of unanswered questions increases so does the value of the survey decrease

IBP Area and IBP Subdivision

IBP Area An IBP Area is a site of class A B C or D as defined below under 4(3)
IBP Subdivision An IBP Subdivision is part of an IBP Area It is an area variable in extent which is of interest to conservationists and biologists and which is of such size and uniformity that its features can be meaningfully set out on a single Check Sheet

Notes on Sections

In the paragraphs below the numbers correspond with the section (question) numbers on the Check Sheet

General rules
(a) Where quantitative information is requested (eg area) this should be given as accurately as possible Estimates are acceptable in the absence of accurate values
(b) In general only positive statements should be made (1 e presence of a particular feature) but when a feature is known with certainty to be absent this may be stated

1(1) Name of surveyor
(2) Address of surveyor
(3) Check Sheet completed on site/from records Check (ie \downarrow) one or both as applicable
(4) Date Check Sheet completed

2(1) Name of IBP Area If the IBP Area is Class A B or C (see 4(3) below) insert the name as it appears in the UN List (A and B) or in national lists of protected sites (B and C) For Class D IBP Areas insert the name by which the IBP Area is generally known If the UN List is not available for Classes A and B fill in the name by which the IBP Area is generally known

LEGEND

NATURAL AREA INFORMATION FORM

1. Name of Natural Area \qquad
2. Administering Agency \qquad
3 Supervising Field Unit Rogue National Forest

4 State and County \qquad Oregon, Jackson County

5 Latitude and Longitude $122^{\circ} 31^{\prime}$ $42^{\circ} 56^{\circ}$
(This information will not be given to the general public)
6. Primary type on areas SAF-243, 2, 055 Acres

7. Other important types represented on area.

7a. Botanic $\frac{-525 \text { Acres, meadows and bavren (not }}{\text { alpine) }}$
7b. Zoologic z-17 black-tailed derv, beanie, cattle

7c. Geologic G-13, Andesitic pumice and andesite,
G-16 igneous extrusive rocks
7d. Aquatic A-12 2 miles swiftly flouring streams
8. Acreage 2660 Acres

Steep

This form should be filled out in accordance with the instructions on the accompanying information sheet.

[^0]: This work was supported by a contract from the Pacific Northwest Forest and Range Experiment Station and the Pacific Northwest Natural Area Committee

[^1]: ${ }^{2}$ Walker, Gorden J , Range Technician, Prospect Ranger Station, Prospect, Oregon personal communication, 1979

[^2]: Festuca calıfornica Vas (California fescue) Festuca mıcrostachys Nutt (Nuttall's fescue) Festuca occidentalıs Hook (western fescue)

