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Results From Green-Tree Retention
Experiments: Ectomycorrhizal Fungi
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ABSTRACT

The ecosystem effects of natural disturbances differ dramatically from those engendered by even-aged management
practices that emphasize commodity production. Because forest management activities can reduce ectomycorrhizal (EM)
fungus diversity and forest regeneration success, management approaches are needed to sustain these essential forests
organisms. We present selected results from experiments that test biodiversity assumptions behind current guidelines for
ecosystem management. We examine contrasts in structural retention as they affect biodiversity and sporocarp production
of EM fungi—a functional guild of organisms well suited as indicators of disturbance effects on below-ground ecosystems.

Overstory removal significantly reduced EMF sporocarp production but, in contrast to the initial hypothesis, the effects
were not always proportional to basal area retained. The effect of spatial pattern of retention varied between retention levels
and mushroom and truffle sporocarp groups. Management implications include the need to address the conservation of rare
truftfle and mushroom species in a manner that recognizes their different responses to forest disturbance. We also raise the
hypothesis that fire suppression may favor mushroom production over truffle production. Because fire seems to be impor-
tant in the reproductive evolution of EMF, our results also add further impetus to the development of management plans
that seek to restore forest health from the effects of decades of fire suppression.

Experimental results suggest using dispersed green-tree retention in combination with aggregated retention to maintain
sporocarp production. Such a mix ameliorates disturbance effects and may maintain higher levels of sporocarp production
in the aggregates by reducing edge effects. It remains unclear how short-term reductions in sporocarp abundance will affect
EM fungus populations for future forests. After disturbance, spores are a form of legacy and key to enabling adaptations by
other species in the face of environmental change. Long-term silvicultural experiments are essential for monitoring trends
in the EM fungus community.
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INTRODUCTION

Fungi profoundly affect nearly all terrestrial ecological
processes and events; accurate information on the fungal
component is required to adequately understand how eco-
systems function (Trappe and Luoma 1992). When fungal
mycelia form particular associations with a host plant’s fine
roots, a symbiotic organ forms, called a mycorrhiza. Through
this structure the plant provides carbohydrates to the fungus,

which in turn facilitates uptake of nitrogen, phosphorus,
other minerals and water to the plant (Allen 1991, Marks
and Kozlowski 1973, Smith and Read 1997). The fungus
also protects plant roots from attack by pathogens and the
effects of heavy metal toxins, promotes fine root develop-
ment, and may produce antibiotics, hormones and vitamins
useful to the plant (Smith and Read 1997). Mycorrhizal
associations are vital to the existence of most vascular
plants (Smith and Read 1997, Trappe 1987).
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Auvailability of mycorrhizal fungi determines patterns
of primary plant succession on new soils such as moraines,
fresh volcanic deposits, and mine spoils (Allen 1991,
Céazares 1992, Helm et al. 1999, Trappe and Luoma 1992).
Mycorrhizal fungi are associated not only with increased
plant productivity but also with developing community
diversity following disturbance (Allen et al. 1995, Cazares
1992). Mycorrhizal fungal species differ in their ability to
provide particular benefits to their hosts, and their presence
and diversity change during plant succession (Cazares
1992, Helm et al. 1996, Mason et al. 1983, Trappe 1977).
A diversity of mycorrhizal fungi is likely essential for suc-
cessful shifts of geographic range by plants due to climate
change (Perry et al. 1990).

The ectomycorrhiza type is characterized by a mantle
of fungal hyphae encasing the root tips of the associated
plant. Ectomycorrhizae are characteristic of the Pinaceae
and Fagaceae which dominate most forests in the Pacific
Northwestern United States, and are required for survival
of these hosts in field soil (Trappe and Luoma 1992). We
are able to reasonably infer the mycorrhizal status of diverse
forest fungi by their placement in certain fungal genera
(Molina et al. 1992, Trappe 1962) despite the reservations
expressed by Arnolds (1991). Ectomycorrhizal fungi (EMF)
form a functional guild linking primary producers to soil
systems, are important in ecosystem response to disturbance
(Janos 1980, Perry et al. 1989), and may be sensitive indi-
cators of environmental changes (Arnebrant and Soderstrom
1992, Arnolds 1991, Termorshuizen and Schaffers 1987,
Termorshuizen et al. 1990). Ectomycorrhizal fungi mostly
produce macroscopic sporocarps in the form of mushrooms
and truffles (epigeous or above-ground fruiting bodies and
hypogeous or below-ground fruiting bodies, respectively).
Sporocarps produce the spores that disseminate the species
and provide for genetic recombination within and among
populations.

Forest Management

Studies from the Pacific Northwest indicate that forest
management activities can reduce ectomycorrhizal fungi,
forest regeneration success, and influence patterns of plant
succession (Amaranthus et al. 1994; Harvey et al. 1980a,
1980b; Waters et al. 1994; Wright and Tarrant 1958).
Development of management approaches to sustain these
essential organisms in forests has been hampered by a lack
of knowledge of EMF community structure, diversity, and
spatial and temporal variability across stands and land-
scapes.

Many EMF species, especially those that produce truf-
fles, are also important dietary items for vertebrates and
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invertebrates: some small mammal species rely on them for
over 90 percent of their diet (Carey et al. 1999, Claridge et
al. 1996, Hayes et al. 1986, Jacobs 2002, Maser et al. 1978,
Maser et al. 1985). Truffle species diversity provides neces-
sary nutritional diversity to the diet of mammal mycophagists
(see review by Luoma et al. 2003). Small mammals, in
turn, form important links in the trophic structure of forest
ecosystems as prey for raptors (e.g., owls and goshawks)
and mammalian carnivores (e.g., martens and fishers)
(Carey 1991, Fogel and Trappe 1978, Hayes et al. 1986,
Mclntire 1984).

Few studies have examined silvicultural effects on
EMEF sporocarp production (Colgan et al. 1999, Waters et
al. 1994). Although EMF sporocarps do not reveal as com-
plete a picture of the below-ground EMF community as
root tip studies (Dahlberg et al. 1997, Gardes and Bruns
1996, Horton and Bruns 2001, Yamada and Katsuya 2001),
silvicultural effects on sporocarp production mirror the
effects found in root-tip studies: species diversity and com-
munity composition can change dramatically. Thinning
affects the composition and diversity of EMF in the stand
as well as the frequency of sporocarps (Carey et al. 2002,
Colgan et al. 1999, Waters et al. 1994). For example, stands
that were heavily thinned showed increased dominance by
one fungal species. Thinning also reduced truffle biomass,
frequency of truffles, and shifted overall species composi-
tion (Carey et al. 2002, Colgan et al. 1999). However, total
truffle biomass and frequency of sporocarps may recover
10 to 17 years after thinning, whereas shifts in species
dominance persist longer (Waters et al. 1994).

Green-tree retention, the practice of leaving live, struc-
turally-sound, large trees in a stand after extracting timber,
is an alternative forest management method designed to
accelerate the development of late-successional forest char-
acteristics in young, managed stands (Aubry et al. 1999).
The Demonstration of Ecosystem Management Options
(DEMO) experiment is a long-term study designed to exam-
ine the effects of different levels and patterns of green-tree
retention on multiple forest attributes (see Aubry et al. 1999).
Studies of disturbance effects on the below-ground ecosys-
tem are relatively rare. These studies are critical to forest
managers seeking to incorporate basic ecological knowl-
edge into forest management policies and practices. Here
we focus on initial results from an experiment that tested
some of the assumptions behind the current guidelines for
ecosystem management as they affect a functional guild of
organisms (EMF) that are well suited as indicators of dis-
turbance effects on the below-ground ecosystem. Detailed
reporting of the DEMO fungi study can be found in Luoma
et al. (2004).
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Figure 1—Mean total ectomycorrhizal mushroom standing crop biomass
for the fall samples from three DEMO blocks. Standard errors are indicated
by vertical bars. Among-treatment comparisons were derived from multiple
analysis of variance, repeated measures contrasts of the time * treatment
interaction using transformed data. Treatments (see methods) without a
shared horizontal bar above them are significantly different at p < 0.1
(adapted from Luoma et al. 2004, used with permission). D = dispersed
retention; A = aggregated retention.

The DEMO Experiment

The objective of the DEMO fungi study was to compare
pre- and post-treatment standing crop biomass of EMF
sporocarps within no harvest, 75-percent, 40-percent (dis-
persed and aggregated), and 15-percent (dispersed and
aggregated) retention treatments. The DEMO experiment
replicated six green-tree retention treatments in six geo-
graphic locations (Aubry et al. 1999). The treatments con-
sisted of four levels of live tree retention (15, 40, 75, and
100 percent of existing live-tree basal area), with two pat-
terns of retention, aggregated (A) and dispersed (D), applied
to the 15- and 40-percent retention treatments. The aggre-
gated pattern consisted of residual trees retained in clumps
of about 1 ha and the dispersed pattern has residual trees
homogeneously dispersed throughout the unit. For the 75-
percent retention treatment, all of the harvest occurred in
approximately 1-ha patches dispersed throughout the unit.
Fungal sporocarp sampling was limited to 3 blocks.

Study Area

General environmental characteristics of the sites are
described by Halpren et al. (1999). The Butte block is
located on the Gifford Pinchot National Forest in south-
western Washington. The Dog Prairie and Watson Falls
blocks are located on the Umpqua National Forest in south-
western Oregon. Prior to harvest, all blocks were dominated
by Pseudotsuga menziesii (Mirb.) Franco. The importance
of other tree species varied by block (Halpren et al. 1999).

RESULTS

Luoma et al. (2004) found that total fall biomass exceeded
total spring biomass for both epigeous and hypogeous

Figure 2—Mean total truffle standing crop biomass for the fall samples from
three DEMO blocks. Standard errors are indicated by vertical bars. Among-
treatment comparisons were derived from multiple analysis of variance,
repeated measures contrasts of the time * treatment interaction using trans-
formed data. Treatments (see methods) without a shared horizontal bar
above them are significantly different at p < 0.1 (adapted from Luoma et al.
2004, used with permission). D = dispersed retention; A = aggregated
retention.

sporocarps except in the Watson Falls block where spring
biomass of Gautieria was a major contribution to greater
spring hypogeous sporocarp biomass. In particular, total
fall mushroom biomass decreased significantly in the 40-
percent aggregated, 15-percent dispersed, and 15-percent
aggregated treatments as compared to the other treatments
(fig. 1). No treatment effect was detected on the fall mush-
room standing crop in the 40-percent dispersed treatment
(fig. 1). Total fall truffle biomass was significantly reduced
in the 40-percent aggregated, 15-percent dispersed, and 15-
percent aggregated treatments as compared to the control,
75-percent aggregated, and 40-percent dispersed treatments
(fig. 2). No treatment effect was detected on the fall truffle
standing crop in the 40-percent dispersed treatment (fig. 2).

DISCUSSION

Relevance to Ecosystem Management

Standing crop data are useful to interpret the role of
fungal species as a food source for animals or the energy
expanded in an ecosystem for species reproduction. Standing
crop of hypogeous sporocarps may underestimate actual
sporocarp biomass productivity because animals utilize a
proportion of the fruiting bodies (Luoma et al. 2003). The
degree of underestimation is most pronounced at periods of
low productivity, when consumptive pressure on the avail-
able food resource is proportionally high (North et al. 1997).

When both epigeous and hypogeous species are simul-
taneously assessed, new understanding of overall diversity
phenomena emerges. For example, the more equable biomass
distribution of hypogeous sporocarps compared to epigeous
between spring and fall (Luoma et al. 2004, Smith et al.
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2002) has important implications to mycophagous mam-
mals. Fungal diversity in the diet of such animals appears
to be nutritionally important (Claridge et al. 1999, Johnson
1994, Maser et al. 1978). Clearly, animals that depend on
fungi as major food items (Fogel and Trappe 1978, Luoma
et al. 2003) could not rely on epigeous fungi for diet diver-
sity over the spring. Quite possibly, the decline in popula-
tions of some mycophagous animals could relate to decline
in diversity of the fungal populations due to habitat distur-
bance (Claridge et al. 1996, Pyare 2001). Results from the
DEMO study show that truffle genera important in the diets
of small mammals were significantly affected by the treat-
ments (Jacobs 2002).

Maintenance of EM fungal diversity is important for
ecosystem health and resilience (Amaranthus 1997;
Amaranthus and Perry 1987, 1989; Perry et al. 1990).
Disturbance, whether natural or human caused, can
drastically alter populations of EM fungi (Amaranthus et
al. 1990, 1994, 1996; Colgan 1997; Pilz and Perry 1984;
Schoenberger and Perry 1982).

The Secotioid Syndrome

Some sporocarps have morphology that is intermediate
between truffles and mushrooms. Such sporocarps have
been referred to as “secotioid” (Singer 1958). In addition to
epigeous secotioid taxa, Thiers (1984) included all truftle-
like taxa in his analysis of the “secoitioid syndrome.” He
proposed that in the Mediterranean and semi-arid climates
of the western United States, high summer temperatures
combined with extended drought stress were primary driv-
ers in the evolution of hypogeous sporocarp formation (i.e.,
the truffle form). Bruns et al. (1989) documented that such
morphological divergence (from mushroom to truffle) can
proceed relatively rapidly, possibly as a result of selective
pressures on a small number of developmental genes. Hibbett
et al. (1994) present a case in which a simple secotioid
phenotype, arising from a mutation at one locus, has per-
sisted over a wide geographic range in wet environments
that presumably do not exert the selective pressures that
drive the secotioid syndrome toward evolution of more
strongly sequestrate (Trappe et al. 1992) sporocarps. Baura
et al. (1992) speculate that such mutations will not persist
long in a population. Kretzer and Bruns (1997) found that
secotioid forms of the important EM mushroom genus
Suillus evolved at least twice and have persisted for evolu-
tionarily significant periods of time over a wide range of
summer-dry habitats in the western United States. They
noted that the selective forces that favor a secotioid lineage
were unclear.
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We propose that results from Luoma et al. (2004) represent
the first experimental evidence to support Thiers’ hypothesis
(1984). Even the relative small (1 ha) gaps created in the
75-percent aggregated retention treatment significantly
reduced fall production of EM mushrooms in the surround-
ing uncut forest. Those same gaps, however, did not signif-
icantly reduce truffle production. The formation of gaps
likely influenced the thermal properties, humidity, and
evapotranspiration of the remaining intact forest (e.g., Zheng
and Chen 2000). Based on these results, we extend Thiers’
hypothesis to encompass the influence of fire in the broader
context of forest disturbance in the summer-dry climates
of the western United States. Fire is an important agent
for producing the patterns of forest fragmentation (e.g.,
Heyerdahl et al. 2001) that would select for hypogeous
sporocarp production via the “secotioid syndrome.”

CONCLUSIONS

Even though green-tree retention can preserve ectomyc-
orrhiza diversity (Stockdale 2000), sporocarp production
and EM species richness was significantly reduced at all
levels of retention except the control. These effects, how-
ever, differed by season and treatment (Luoma et al. 2004).

The DEMO study demonstrated the importance of pre-
treatment sampling. Experimental units within blocks were
intended to be as similar as possible in overstory vegetation
and site characteristics (Aubry et al. 1999), yet pretreatment
results showed that uniformity of fungal populations in
forests based on stand structure alone can not be assumed
(see also Cazares et al. 1999).

Management implications include the need to address
the conservation of rare truffle and mushroom species in a
manner that recognizes their different responses to forest
disturbance. We also raise the hypothesis that fire suppres-
sion may have favored mushroom production over truffle
production. Because fire seems to be important in the repro-
ductive evolution of EMF, our results also add further
impetus to the development of management plans that seek
to restore forest health from the effects of decades of fire
suppression (Agee 1997).

Luoma et al. (2004) also found that overstory removal
significantly reduced EMF sporocarp production but, in
contrast to their initial hypothesis, the effects were not
always proportional to basal area retained. The effect of
spatial pattern of retention varied between retention levels
and mushroom and truffle sporocarp groups. Though not



directly studied in the DEMO experiment, Luoma et al.
(2004) concluded their results supported the use of dis-
persed green-tree retention in combination with aggregated
retention when maintenance of sporocarp production is a
goal. Continuing study of retention level and spatial pattern
relationships is important for development of scientifically
sound silvicultural techniques for use in the pursuit of
science-based forest management.
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