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ABSTRACT: The importance of sample size evaluation in clinical trials is reviewed and a
general method is presented from which specific equations are derived for sample
size determination or the analysis of power for a wide variety of statistical proce-
dures. The method is discussed and illustrated in relation to the t test, tests for
proportions, tests of survival time, and tests for correlations as they commonly occur
in clinical trials. Most of the specific equations reduce to a simple general form for
which tables are presented.
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INTRODUCTION

It is widely recognized among statisticians that the evaluation of sample
size and power is a crucial element in the planning of any research venture.
Often it becomes necessary for the statistician to introduce these basic
concepts to collaborators who may be aware of the problem but who do not
understand the basic statistical logic. In this paper a simple expression is
presented that can be used for sample size evaluation for a wide variety of
statistical procedures and that has often been employed in collaboration
with medical researchers in the conduct of clinical trials [1]. The method
presented is quite general and, it is hoped, may be applied by clinician and
statistician alike in a variety of research settings.

When conducting a statistical test, two types of error must be considered:
Type I (false positive) and Type II (false negative), with probabilities & and
B, respectively. In the following we will consider the general family of
statistics, say X, that are normally distributed under a null hypothesis (H,)
as N(uo, 23) and under an alternative hypothesis (H,) as N(u,, 23); where u,
> o or uy < pe and where 32 and 32 are some function of the variance o?
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Figure1 The distribution of a statistic X with variance 2? under the null hypothesis
Hy p = po. i.e., the curve P(X|H,), and that under the alternative
hypothesis Hy: & = u, or the curve P(X|H,), and the probabilities of Type
I error (a) and Type II error (8), where X, = o + Z,2.

of the individual observations and the sample size N.! Given these distri-
butions one can then determine a and 8 as shown in Figure 1.

In a clinical trial the parameter u is the treatment-control difference in
the outcome measure of interest, e.g., the mean difference on some meas-
urable pharmacologic effect such as serum cholesterol, or the difference in
the proportion displaying an event such as healing. In such cases w, is
usually zero and u, is specified as the minimal clinically relevant therapeutic
difference. (For a more basic introduction to these concepts, see [2—4]).

When the statistical test is conducted, the probability of Type I error, a,
is specified by the investigator. However, the probability that a significant
result will be obtained if a real difference (u,) exists (i.e., the power of the
test, 1 — B) depends largely on the total sample size N. As one increases N
the spread of the distributions in Figure 1 decreases, i.e., the curves tighten;
thus B decreases (power increases). Thus if the statistical test fails to reach
significance, the power of the test becomes a critical factor in reaching an
inference. It is not widely appreciated that the failure to achieve statistical
significance may often be related more to the low power of the trial than to
an actual lack of difference between the competing therapies. Clinical trials
with inadequate sample size are thus doomed to failure before they begin
and serve only to confuse the issue of determining the most effective therapy
for a given condition. Thus one should take steps to ensure that the power
of the clinical trial is sufficient to justify the effort involved.

Conversely, if the power of the trial in detecting a specified clinically
relevant difference (u,) is sufficiently high, say 0.95, failure to achieve
significance may properly be interpreted as probably indicating negligible
relevant difference between the competing therapies. Thus the proper
interpretation of a ‘‘negative” result is based largely upon a consideration
of the power of the experiment.

'The notation N(u, %% denotes the normal distribution with mean u and variance 3*. If X
~ N(n, 2% then Z = (X — w2 'is distributed as N(0, 1), the latter being widely tabulated as
the standard normal distribution.
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These points have been illustrated by Freiman et al. [5] who showed that
of 71 recent clinical trials that reached a negative result, 67 had power less
than 0.90 in detecting a moderate (25%) therapeutic improvement. Their
conclusion is that many of the therapies studied were not given a fair test
simply due to inadequate sample sizes and, thus, inadequate power.

SAMPLE SIZE AND POWER

The problem in planning a clinical trial is to determine the sample size N
required such that in testing H, with stated probability of Type I error «,
the probability of Type II error is a desired small level 8. The parameters of
the problem are «, 8, wo, ., 22, and 22.

Since the variances 3?2 are functions of N, the sample size required is that
which simultaneously satisfies the equalities Pr(Z > Z,) = « if H, is true
and Pr(Z > Z,) = 1 — B if H, is true; where Z, is the stahdard normal
deviate at the a significance level (e.g., Z, = 1.645 for a = 0.05, one-sided)
and where Z = (X — uo)2! is the simple statistic one would use in testing
H,y; where Z ~ N(0, 1) if H, is true (see footnote 1).

It can easily be shown, however, that the sample size that satisfies these
equalities also satisfies the equality

|M1 - #ol =Z 2+ Zg2, (1)

The term Z,; is employed for a two-tailed test. Derivations for particular
cases are given in Snedecor and Cochran [6, p. 111] and Fleiss [ 7, p. 29],
among others.

This basic relationship can readily be grasped from Figure 1. To relate
equation (1) to Figure 1, note that the critical value of X at the « level of
significance is X, = wo + Z,Zo. One can thus readily derive equation (1)
from Figure 1 where the “distance” |u, — uo| is the sum of two parts, [X, —
pol = Zo2o and |u; — X,) = Z43,, where Z, results from the specification X,,,
wi, and 3.

This equation can then be used to evaluate sample size or power for the
most commonly used statistical tests once 3, 2, and « have been specified.
The three basic questions one can ask are

1. What sample size is required to ensure power 1 — 8 of detecting a relevant
difference w,?

2. What is the power (Zg) of the experiment in detecting a relevant difference
p1 when a specific sample size N is employed?

3. What difference y, can be detected with power 1 — g if the experiment is
conducted with a specified sample size N?

Usually, question 1 is employed in planning an experiment and question 2
is employed in evaluating the results of an experiment. Question 3 can be
employed in either case.

For the determination of sample size (question 1) one simply solves
equation (1) for N once the expression for the variances 32 have been
obtained. In many cases, 2 will be a function of the form 32 = ¢%N, where
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o? is the variance of the individual measurements and N is the total sample
size. In this case

1 = o | = (Za0oVN) + (Zao/VN) 2)
Solving for total sample size N one obtains simply
2
N = Za(70+ZBO'1 (3)
M1 — Ho

Likewise, to determine power (question 2) one solves for Z, to obtain from
(2)
\/ﬁ|#’1_l~1’0[ — 2,0y
Zg= (4) (4)

0y

Power (1 — B) can then be determined from the value Z, by referring Z, to
tables of the normal distribution where values Z,; < 0.0 indicate power <
0.50.

Similarly, the minimal detectable difference with power 1 — 8 given a
sample size N (question 3) is obtained by solving equation (2) for u,. In
some cases an explicit solution is obtained, whereas in others, e.g., for
proportions, an iterative procedure is required since both u, and o will be
functions of the same parameters. Thus we shall only consider questions 1
and 2 in the following.

Since equations (3) and (4) follow obviously from equation (2), it is often
convenient to express the basic relationship in the form

VN = o = Zoyay + Zg0, (5)

which can then be solved for N or Z;. This form will be employed in cases
where the basic equations equivalent to equations (3) and (4) become
cumbersome.

The following sections demonstrate how these simple relationships can
be employed with Student’s t tests, chi-square tests for proportions, analyses
of survival time, and tests for correlations. In each case, the explicit
equations for sample size and power computation are presented with
examples.

Most procedures allow unequal group sizes reflected in the sample
fractions Q. and Q. where n, = Q.N, n. = Q.N and Q, + Q. = 1. In the
following, the subscripts e and ¢ are used to denote the experimental and
control groups where the total sample size then is N = n, + n.. Obviously,
Q.= Q.= 0.5 for equal-sized groups. For these procedures it is well known
that power is maximized and total sample size minimized for equal-sized
groups, but due to ethical considerations, unequal-sized groups are at times
desirable.

Virtually all these methods can be used with a simple calculator. To use
these methods one must first specify the parameters of the problem. In
addition to Z, and Zg, and the sample fractions Q, and Q., the specific
parameters of that test must be specified. For example, for the t test of two
independent groups, the group means v, and v, are required as well as the
standard deviation of the measures, o. For some other statistical procedures
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a separate standard deviation is not required since the variance will be a
function of the expectation and/or the sample size alone.

ADDITIONAL CONSIDERATIONS

Sample size evaluation for a clinical trial is almost always a matter of
compromise between the available resources and the various objectives,
such as safety with small effects desirable and efficacy with large effects
desirable, [1, 2]. This leads to a recursive process whereby one cycles
through various specifications of the desired detectable effects and considers
the resulting sample size in relation to the objectives and the resources
available. Eventually one reaches a sample size and statement of objectives
that are consistent with each other and the available resources.

In this process, however, attention should also be given to the operational
aspects of the trial. Foremost among these are the factors related to the
administration of the program of therapy and the evaluation of outcome. As
a simple example, consider a clinical trial of an ulcer healing agent with
healing assessed endoscopically after 4 weeks. Noncompliance, dropouts,
and lack of control of other factors such as diet, drinking, and smoking may
all combine to reduce the observed healing rate and thus reduce the
statistical power of the trial. Likewise, failure to set uniform standards for
endoscopic examination and criteria for healing will increase the variability
of the outcome measurement, again leading to reduced power.

Among these, a major consideration is the rate of dropouts, patients who
terminate therapy for reasons related neither to the disease under treatment
nor the therapy. If an R dropout rate is expected, a simple but adequate
adjustment is provided by Ny = N/(1 — R)? where N is the sample size
calculated assuming no dropouts and Ny that required with dropouts [1].
Likewise, to evaluate power one would use equations and tables with N =
Ny(1 — R)* where Ny is the observed or expected sample size. Additional
procedures are described in [8] and [9].

STUDENT’S t TEST

In its most general form, Student’s t is used to test the hypothesis that the
mean of a normal variable, », equals some specified value Hy: o = v,
against some alternative H: u, = v,, v, # v,, when the variance is unknown.
The test statistic is of the form t = \/I\—I(x — M)/S where x is the sample
mean with standard error S%N, S? being the unbiased sample estimate of
the variance o® on N — 1 degrees of freedom (df). The distribution of t
becomes increasingly close to that of a standard normal variable as df
increases, at least 30 df being required for the approximation to be adequate
[10]). Thus equations (1) through (4) can be employed to yield an approximate
evaluation of sample size and power.

This approach, however, will tend to overestimate power for given S?
and N, and thus it will tend to underestimate the required sample size,
although this effect is increasingly negligible for increasing df. An adequate
adjustment is obtained by the correction factor f = (df + 3)(df + 1), where
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fN patients are actually employed after N is obtained from equation (3), or,
alternately, by N/f used in equation (4) when solving for power [6, p. 114].

For those who desire an exact solution, an iterative procedure is required
and is described, with brief tables, in Cochran and Cox [11, p. 19]. Under
this procedure, one obtains a trial value for N that is then adjusted in light
of the resulting degrees of freedom.

In sample size or power evaluation for the t test a critical feature is the
specification of o%. For the other tests considered later (proportions, etc.) the
variances are not specified separately. Usually a value for ¢ can be specified
based on prior experiments using the same measurements; in these cases it
is best to use the largest value o® expected. Often a pilot study is helpful to
provide an estimate of o under the conditions to be used in the experiment
to be conducted. Of course, if power is to be evaluated after an experiment
was conducted with a given N, then the obtained estimate 52 of the variance
should be employed.

A Single Mean

The most basic form of the t test is the test of Hy: wy = v, for some a priori
specified mean value v, with variance ¢, against an alternative Hy: u, = v,
# p, with variance gi. The test statistic is as presented where x is the mean
of a single sample of observations with sample variance S®. Given specified
a, B, po, p1, 0, and oy, the equations for sample size N or power (Z;) are
exactly as presented in equations (3) and (4), respectively.

Two Independent Groups

The t test is most widely used to test the null hypothesis that the means of
two independent groups are equal, Hy: po = (ve — ) = 0, based on two
separate samples of sizes n, = QN and n, = QN, Q. + Q. = 1. The
fractions Q. and Q. are the sample fractions and refer simply to the
proportion of patients in each group, N being the total sample size. The test
statistic employs the pooled estimate 5% of the common variance o2 = o2 =
o? with N — 2 df. It is well known that power is maximized for Q. = Q. =
0.5.

Under H;, u, is specified as the minimal relevant difference to be
detected, w, = |v. — v| # 0, and it follows that 2= 33 = o%(Qs' + Q7 )/N.
Using equation (1) the equations for total N and Z; are

_o%Qi' + Q7Y (Za + Z))*

N k (6)
M1
|M1|\/N‘Zu0\/Q§l + Q¢!
8= = @)
o VQ:t+ Q;

where for equal sample sizes (Qz! + Q:Y) = 4.0.

For example, consider an experiment where o is known not to exceed or
known to be o = 1.0 and it is desired to detect a difference u; = (v. — v.)
= 0.20. From equation (6), to ensure a 90% chance of detecting this
difference (Z, = 1.282) with a = 0.05 (one-sided, Z, = 1.645), N = 858 is
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required. This would yield a t test on 856 (N — 2) df, and thus with the
correction factor f = 1.006, the final sample size desired is fN = 860.

Suppose, however, that the experiment was actually conducted with only
102 patients. The correction factor is 1.02 and equation (7) is employed with
N = (102/f) = 100, to yield Zg = —0.645, thus indicating that for N = 100 the
experiment had about 26% power. If the experiment produced a negative
result, however, equation (6) could also be used to show that with N = 100
there was almost 100% power in detecting a difference u, = 1.0 (Zz = 3.355).
Thus one could safely rule out a difference on the order of u, = 1.0.

Paired Observations

In the event that the observations in the two groups are linked together by
pairing or repeated measures at times 2 and b on the same patient, the t test
is conducted using the mean difference d = X, — X, with a standard error
3% = o%N where 03 = 20%1 — p) if 62 = o} = 0% p being the prepost
correlation. From equation (1) the equations for N and Z; for detecting a
true difference u, = v, — v, are:

_(Zs+ Zp%}

ui

VN — Z.0o
Zs= s VN — 20 ©9)

Tq

N ®)

which are equivalent to using equations (3) and (4) with a4 in place of oy
and a;. .

In this instance, often an estimate of o] is available from prior experience.
If not, an estimate of o can be used with an estimate of the correlation p.
Note that pairing is only efficient if p > 0, i.e., there is positive correlation
between the 2 and b measurements. If no estimate of p is available, it is
safest to assume p = 0 or, nominally, p = 0.10.

Two Independent Groups with Paired Observations

A common related design is to employ two treatments in samples of sizes
n. and n, where each patient also serves as his own control with measures
at times a4 and b such as before and after treatment. In this case the test
statistic is the same as for two independent groups where the prepost
differences for each patient are used as the individual observations; i.e.,
X.= d. and X, = d.; and where the pooled estimate of the variance of the
differences (S3) is employed. The problem is formulated as u,= |8, —
8 |, 8e = (Web — Vea), 8c = (Wep — vea), With 22 = g3(Qs! + Q7 Y)/N. This yields
equations equivalent to equations (6) and (7) with o, substituted for o.

PROPORTIONS

In experiments where the basic outcome is a qualitative variable, such as
success versus failure, the data are usually expressed as a proportion, e.g.,
the proportion of successes, or simply p. The exact probability distribution
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of such a proportion is the binomial distribution that has parameters N
(sample size) and = (the true population proportion). For large N (i.e.,
asymptotically) the binomial distribution may be approximated by a normal
distribution with mean w = # and variance 22 = (1 — #)/N. Thus, in
experiments involving tests for proportions, the basic equations may be
used for the determination of sample size and power.

A Single Proportion

In one-sample problems that yield a single proportion, the hypothesis Hy: o
= 1y is tested where one wishes to detect a clinically relevant alternative
H:u, = 7, where 7, > 7y or m; < . Given a proportion p from a sample
of size N, the test statistic employed is Z = (p — m()/2 where 3% = 7o(1 —
mo)/N and where Z ~ N(0, 1) if H, is true. As an example, in a cohort follow-
up study, one might test that the k year mortality equals that obtained in a
previous (and comparable) cohort, where =, is that observed in this latter
cohort.

For the determination of sample size or power one substitutes g§ = (1
— my) and 0% = m(1 — m,) into equation (3) or (4); the equations for sample
size N and power Z; being

N o |ZeYmd=m) + ZgN/mi (1 - m)}z (10)
Ty — Ty
Zg= \/ﬁ|771 = | - Z“\/m (11)

\/771 1- )

Two Independent Proportions

In the case of two independent samples of sizes n, and 1., the nuil hypothesis
Ho:pp = (me — 7) = 0 is tested with the statistic Z = (p, — p)/S where p,
and p are the proportions of events in the two samples, o} is estimated as
S2=(m;'+nYpQ -p),p = QePe + QcPe, and where under Hy, Z ~ N(0,
1).

For the determination of sample size and power, the minimal relevant
difference u, = |m. — 7| is then specified. Since the variance will depend
on the values specified and not on the absolute difference, both 7. and 7,
must be specified. This yields o = [m(l — 7)) Q5! + 71 — 7o) Q']
Under the null hypothesis Hy:we = 7. = , o = 0 and 7 is specified as =
= Q.7 + Q.m.. This then yields ¢ = (Qz! + Q:Y)7 (1 — 7). Substituting
into equation (5) yields the well-known formula

VNl — 7 = Z VT — Qe + Q7Y
+ ZNVmd1 — m)Qe + w1 — m)Q:'  (12)

which can then be solved for N or Z,.
This expression can be simplified, however, by noting that for equal
sample sizes o} = 47 (1 — =) is always greater than or equal to o = 2m,(1
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— me) + 2w (1 — 7). This then allows use of the simpler equations
_ Zot Zp)m(l - m)

(me — 7Te)2

\/N_Iﬂe - 770'
2Vl —~ 7)
Halperin (personal communication to Paul Canner) has shown that the
approximation (13) will yield total sample sizes no greater thanZ} + 2Z,Z,
above that obtained from equation (12); i.e., to within 5.86 units for a =
0.05 (one-sided), 8 = 0.10.

In using these formulas, note that 7 depends on the actual values 7, and
. specified under H, and not just on the relevant difference u, = |me — 7.
Also, since 77(1 — qr) is at a maximum for 7 = 0.50, it then follows that for
fixed positive u,, as . gets smaller, the required sample size also gets
smaller and power increases assuming 7. < 7). In such problems, therefore,
it is safest to specify the largest realistic value for = (where 7. > 7. and, =,
< 0.50) so as not to underestimate sample size or overestimate power.

For example, suppose we wished to conduct a controlled clinical trial of
a new therapy and the rate of successes in the control group is not expected
to be greater than m. = 0.05. Further, we would consider the new therapy
to be superior—cost, risks and other factors considered—if #, = 0.15, thus
y1eld1ng pi = 0.10, 7 = 0.10, and 4#(1 — #) = 0.36. Using equation (13)
with a = 0.05 (one-sided) and 8 = 0.10 yields N = 310 (rounded up from
308.4); the more precise formula (12) yields N = 306 (rounded from 304.6).

Suppose, however, that the experiment was conducted with only N =
100. Using equation (14) indicates that the power of the experiment in
detecting u; = 0.10 with . = 0.05 is only 51% (Z; = 0.022). If a negative
result was obtained, however, one might wish to determine the power of
havmg detected larger differences, say u, = 0.40 for 7. = 0.05. This yields

= 0.45, w = 0.25, and 2V #(1 — 7) = 0.886. From equation (14) we find
that N = 100 yields 99.9% power (Zz = 2.87). Thus a true difference of this
magnitude could confidently be ruled out.

For further illustration, Lachin [2] used these procedures to discuss
sample size considerations for FDA Phase II and III clinical trials of new
drugs, and these methods have been used in a variety of clinical trials.
Additional references include [1, 5, 7, and 8].

(13)

Zgz _Z(x (14)

The Angular Transformation

The procedures just described are usually preferred since the tests for
proportions using the normal approximation to the binomial are equivalent
to the usual ? tests (see under Discussion following). Others [12], however,
have employed the angular transformation A(p) = 2 arcsin \p, where A(p)
is expressed in radians, not degrees.? Given a proportion p with binomial

*For those whose calculators provide the sin function in degrees, the conversion factor is
arcsin (radians) = (0.017453) arcsin (degrees).
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expectation 7, then A(p) is approximately normally distributed as N[A(w),
N~1]. Since the variance (2% = 1/N) is now independent of the expectation,
the resulting sample size and power equations are further simplified. This
approach, however, is not as accurate as that described herein.

As an illustration, again consider the example presented earlier under
Two Independent Proportions with 77, = 0.05 and 7, = 0.15. The equation
based on the arcsin transformation with equal sample sizes is

_ 2AZa+Zp)
[Amd) — Aol

and for ¢ = 0.05 (one-sided) and 8 = 0.10 we find N = 290. This is
somewhat less than the N = 310 estimated from the approximate equation
(13) and the more precise formula (12), which yields N = 306. In general the
angular transformation procedure yields N about 3-5% less than that from
equation (12), with o = 0.05 (one-sided), 8 = 0.10.

(15)

Paired Observations

Now consider the problem where two groups of observations are linked
together in some way such as through matching or repeated measures on
the same individuals at times 4 and b. This is exactly analogous to the
problem of the t test for paired observations except that the outcome is now
qualitative rather than quantitative. In this case, the basic data are expressed

as
Time b
+ —_
+ m, m.,_ m,
Time a
_ m_. m__
m,,

where m, _, for example, is the number of pairs with (+) for observation a
(time a4 or the a pair member) and (—) for observation b. For the a
observations m, is the total number (+) and likewise m, for the b observa-
tions. The frequencies (m’s) are then converted to proportions (p’s) by
dividing by the total number of pairs, N.

In such problems, one wishes to test the null hypothesis Hy: o = (7, —
me) = 0. Note, however, that 7, — 7, = w_, — m._; thus the problem can
then be expressed solely in terms of the discordant proportions 7_; and 7, _
where H, implies that w#_, = @,._ = #. The test statistic employed is Z =
-+ — p+)S where S* = 2p/N, p = Y2(p_, + p,_) is the sample estimate of
7 and where under Hy, Z ~ N(0, 1). Note that Z? is equivalent to the
McNemar x? statistic usually employed (see under Discussion following).

For sample size or power determination the dlinically relevant difference
py = |m_, — m,_| is specified. The corresponding variance has been shown
by Miettinen [13] to be 0} = 27_, w,_/m where m = Ya(m_, + 7..). Under
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Hgppo = (-4 — 74-) = 0, which implies o§ = 27r. Substituting into equation
(5) yields the basic relationship

WNr_, — i | = ZN27 + ZN 27 I (16)

which can be solved for the total number of paired observations (N) or
power (from Z,).

For example, consider that we wish to detect a difference u,; = 0.15 where
m— = 0.05, (implying 7_, = 0.20), using equation (16) for @ = 0.05 (one-
sided), B8 = 0.10 yields N = 80.

Two Independent Groups with Paired Observations

As with the t test, this can be expanded to the problem of two independent
groups of patients with paired observations on each patient.® Under this
design, repeated observations (+ or —) are obtained at times 2 and b on two
independent groups of sizes n, = Q.N and n, = Q.N. The null hypothesis
of no treatment by time interaction Hy:po = 8. — 8. = 0 is to be tested,
where 8, = 7g, — ,q is the change over time in the treated group and §, =
Tep — Teq 1S that for controls.

As shown under Paired Observations, the problem can be expressed
solely in terms of the discordant observations within the two-way table for
each group, denoted as me,_, me_y, Ter—, and m._,, which in turn define the
degree of interaction w, = |5, — 8| to be detected. Under H; the sample
statistic D = de — d. = Pe_y = Pes— — Pe-+ + Pes- is normally distributed
with u, = |A| where

A= Me—t — Mes— — Te—y T Teym (17)
and
o= 4me Ty + ey Teio (18)

Qe("Te—+ + Ter) Qc(ﬂ'c—+ + Tey)

A sufficient condition for H, to be true is the assumption of homogeneity
wherein the treated and control groups are assumed to be drawn from the
same population with common parameters 7, = Qume;- + Qemer— and
Ty = Qefle—v + Qemre_y yielding u, = 0. Alternatively, such a severe
assumption may not be required and one might fit a no-interaction model
to the interaction parameters to obtain the set of no-interaction parameters,
T, A8 Moy = Mer_ + Y, Wiy = Toey — Y, Wore = Moy — yand wi, = me_,
+ v, where y = A/4 and A is defined as in equation (17). Alternatively, one
might employ the same parameters m¢,_, 7e,- under H, and H, and then
complete the no-interaction model with parameters 7)., = 7o _, wi, =
Moy + Y2A, moy. = ey and wi_, = me_, — Y2A. In each case’ D is normally
distributed with uy = 0 and variance o2 of the same form as equation (18)
but with 7’ substituted for the .

SLachin et al. [1] also present extensions to analyses across independent subgroups within
two independent primary groups.
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The null hypothesis Hy:A = 0 is then tested using Z = (d, — d /&, usually
with &, defined from the sample p’s under the assumption of homogeneity.
In the latter case i, . = woy .= my_and wi_, = wi_, = 7T_,.

Substituting into equation (5) yields the equation

\/ﬁ|77e—+ - Tey— — Te—y T 7Tc+—| =

7 \/ 4o iy + i me,
TVQe (i + ) Qe(mes + mal)  (19)

+7 \/ dre | Tei + dm._, 7Tc+i7
B
Qelmer + ey ) QulTe_y + mes)

with the #’ defined under the assumption of homogeneity or after fitting
one of the no-interaction models. This can then be solved for total sample
size N or power.

For example, consider a clinical trial in which 100 patients, 50 in each
group, are to undergo evaluation before and after treatment and we desire
the power of the study to detect group differences. The parameters of the
problem may be specified as w.;_, 8. (which yields m._,), me,_, and A
(which then yields 7. ,). Assume we are interested in detecting moderate
differences such as m.,_ = 0.03, 6, = 0.05, mo,_ = 0.03, and u; = A = 0.15.
Using ¢, = 7ey_ and we,_ = m,,_, fitting a no-interaction model and then
using equation (19) with « = 0.05, (one-sided), we find that Zz; = 0.734 and
power = 77% (B8 = 0.23). Solving for sample size in equation (19) with 8 =
0.10 indicates that N = 151 yields 90% power of detecting these same
effects.

Discussion

Although the problems just given are presented in terms of the normal
approximation to the binomial, a two-tailed test using each of the statistics,
Z, presented under A Single Proportion, Two Independent Proportions, and
Paired Observations yields the same p value as the one df chi-square test
usually employed in the same situation. For each of these Z and chi-square
(XY tests, it is easily shown that x* = Z? and thus that the p values for the
two tests are the same. For example, the 1 df chi-square critical value at the
0.05 level is x3.05s = 3.841, which equals (1.96)%, where Z 45 = 1.96 (the two-
tailed critical value at the 0.05 level). Thus, if one intends to use the
inherently two-tailed chi-square test, two-tailed sample size or power
determination should be employed (i.e., using Z,, rather than Z,). Other-
wise, sample size may be severely underestimated.

When a two-tailed test is to be conducted, however, one must carefully
consider each of the two possible alternatives. For example, in tests of a
single proportion, Hp:r = m, is tested against an alternative, which for a
two-sided test is specified as Hy:py = 8 = |y — 7ol # 0. The two-sided test
thus implies two alternative values for 7yi7yy = 7o + 6 and 7, = 7y — 8.
Obviously, since the variances depend on m,, the estimated sample size will
be greater, and power smaller, for the alternative (i,, or m,) closest to 0.50.
[Note that 7(1 — 1) is maximized at 7 = 0.50]. In fact, the larger of the two
resulting sample size estimates may be as much as 4.64 times the smaller
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estimate. Thus, if a two-tailed analysis is to be conducted, one should
consider the two implied alternatives (e.g., 7y, and 7,9 and use whichever
is closest to 0.50.

An alternative would be to employ sample size procedures using the
power function of the chi-square test itself, which is inherently two-tailed.
Lachin [14] discusses this procedure for the general r X c contingency table
and showed that the use of the limiting chi-square power approach and the
two-tailed asymptotic normal equation (11) were in close agreement for the
2 X 2 contingency table.

SURVIVAL ANALYSIS

In many clinical trials, simple proportions as described in the last section
will be used to evaluate the outcome, such as to evaluate the healing or
improvement rate in an acute condition with a short-term therapy. In many
other cases, however, the important feature is not only the outcome event,
such as death, but the time to the terminal event, the survival time. In these
trials, the data is analyzed using life-table methods that consider the time
to the terminal event for each patient and that provide a more powerful
estimate of the, say, T year survival than is obtained from the crude
proportion of survivors after T years. Some basic references on this proce-
dure are [15-17].

The basic life-table method of analysis is distribution free in that no
underlying assumptions about the distribution of time to event need be
specified. For sample size evaluation, however, some such assumption must
be made. The most common assumption is that time to survival is exponen-
tially distributed with hazard rate A, where at any time ¢t the proportion of
survivors, Py(t), is given as Py(t) = e ™. Under this model log [Py(t)] is
linearly decreasing in time with slope A. In a cohort of N patients, all
followed to the terminal event with mean survival time M, the hazard rate
is estimated as L = M~ and asymptotically L ~ N(A, A%N), [18].

Two Independent Groups

Consider that there are two independent groups of sizes n, and n, all
followed to the terminal event where time t is measured from the time of
entry into the study. The null hypothesis of equality of survival is equivalent
under exponential survival to Hy: (A — A¢) = 0, which can be tested using
the statistic Z = (L. — L.)/S where L. and L. are the estimated hazard rates,
Le=M;', L. =M, S2 = (! + ngY)L%, L = (Q.L. + Q.L.), and where
under Hy, Z ~ N(O, 1).

For the determination of sample size and power one specifies the minimal
relevant difference u, = |\ — A|, which yields o= (A2Q; T+ NQ:Y. Under
the null hypothesis uy = 0 and o = A(Q:! + Q:") where A = QA + Q..
Substituting into equation (5) yields

VN = A | = ZNVAT (@1 + Q0D + ZaV/AEQ5 T + A2Q;¢ (20)

which can then be solved for N or Zg.
This equation was also presented by Pasternack and Gilbert [19] and was
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shown by George and Desu [20] to be slightly conservative in comparison
to the exact distribution of the ratio L./L., which has an F distribution.
George and Desu also present the following approximation

VN[Vatn(AAe)] = Zo + Z (21)

which they show to be accurate to within two sample units of the exact
solution.

Another approximation can be obtained directly from equation (20) by
noting that for equal sample sizes 4\* is always less than or equal to
2(A3 + A2). This then yields

VNPRe = Alihe + X0 = Z, + Z, (22)

when using equal sample sizes. This approximation will yield values
between those from equation (20) and the approximation (21) of George and
Desu and can be shown to be within Z} less than that obtained from
equation (20).

Two Independent Groups with Censoring

The formulation just presented will rarely be applicable because it assumes
that all N patients will be followed to the terminal event no matter how
much time is required for the last patient to reach that event. This is rarely
practicable. A more realistic approach is to allow for the trial to be terminated
at time T. Assume that the patients enter the trial at a uniform rate over the
interval 0 to T and that exponential survival applies, as earlier. If we denote

(N = NTIAT — 1 + e~ (23)

then it can be shown thatofj= ¢(M(Q:'+ Q") and of= ¢(AJQ:' +
d(\)Q:! where A = QA + QA [18]. Substituting uy = Ae — A, o = 0,
oi, and o} into equation (5) yields

VNe = A | = ZoVoN(Qe T+ Q) + ZaVA)Q: ! + d(A)Q:! (24)

with the ¢(\) as defined in equation (23). This can then be solved for sample
size N or power Z,.

These expressions can be simplified, however, since empirically for
Q.= Q., 0> a%, and as employed by Gross and Clark [18, p. 264] we can
use the simple equation

VN = A = (Zo + Z)VOAIQ: " + d(AQ:! (25)

Again this approximation is highly accurate.

In the event that all patients enter the trial at the same point, or if each
patient enters the trial at random but each is only followed up to T years
after entry, the resulting equations are identical except that ¢(}) in equation
(23) becomes simply A%/(1 — e™).

At this point it should be noted that the sample size obtained with a
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study of T years duration is that required to yield the same number of
deaths (events) as obtained from equation (21), allowing for the fact that not
all patients will have died when the study is terminated. This is also true of
the following procedure.

Two Independent Groups with Limited Recruitment and Censoring

In the formulation just presented, note that patients are eligible to enter the
trial up to the trial end date, time T. Usually, however, it will be desired to
recruit patients for study over an interval 0 to T, and then to follow all
recruited patients to the time of the terminal event, or to time T where T >
T,. Based on the developments in [18, pp. 66-67], it can readily be shown
that the variances ¢3 and o? are as in the previous section but with ¢(A)
now defined as
AT = Ty) _ o~ AT |1

s e
d*(N) = A2 [1 NT, (26)

The desired sample size or power is obtained on substituting ¢*(\) for ¢(A)
in equation (24), or in equation (25) to yield an accurate approximation, and
solving for N or Z.

For example, consider that a clinical trial is to be conducted for a disease
with moderate levels of mortality with hazard rate A = 0.30, yielding 50%
survivors after 2.3 years. Suppose that with treatment we are interested in
a reduction in hazard to A = 0.2, i.e., an increase in survival to 64% at 2.3
years. With equal-sized groups, a = 0.05 (one-sided) and 8 = 0.10, equation
(20) yields N = 218 deaths are required, i.e., 218 patients all followed to
time of death. The approximation (22) yields N = 216 and the equation (21)
of George and Desu yields N = 210. If the study was to be terminated after
5 years, then using equation (24) with equation (23) yields N = 504 patients;
the approximation yields N = 508. Finally, assume that recruitment was to
be terminated after the first 3 years of a 5-year study, then using equation
(24) with equation (26) yields N = 378.

Note that under all these plans the sample size requirements are based
on the need to accrue approximately 210 deaths during the study. Also note
that if a fixed number of patients is to be studied, it is better for those
patients to be recruited quickly and followed for a longer period of time
than to extend the period of study and reduce the rate at which the patients
enter the study. This example shows that 504 patients would be needed for
a 5-year study where the patients can enter the study evenly during the full
5-year period, whereas 378 patients would be needed if recruitment was
compressed into a 3-year period with total study duration again 5 years.
The reason for this quite simply is related to the total patient months of
experience of the cohort, i.e., the elapsed time from the time of randomi-
zation to time T summed over all patients. For a 5-year study with
recruitment compressed into the initial 3 years, the average patient months
of exposure would be 3.5 years, whereas for a 5-year study with recruitment
spanning the total 5 years, the average exposure to treatment would be 2.5
years.
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CORRELATIONS

In observational studies that involve correlations as the principal form of
analysis, two types of hypotheses are usually tested: (1) whether a true
correlation actually exists using Hy: p = 0 versus Hy: p = p, # 0; and (2)
whether two correlations are significantly different using Hg: (pe — po) = 0
versus H;: u; = (pe — po) # 0. The simplest approach to such problems is to
employ Fisher’s arctanh transformation [5]:
. (1+71)

C(r) = /zloge (—1T7)_
Given a sample correlation r based on N observations that is distributed
about an actual correlation value (parameter) p, then C(r) is normally
distributed with mean C(p) and variance ¢® = 1/(N — 3). The transformation
of r to C (and vice versa) is widely tabulated. (Note that this is usually
termed Fisher’'s Z transformation, but we here use C to avoid conflict in
notation.)

A Single Correlation

In detecting a relevant simple correlation of degree H;: i, = p,, one tests the
null hypothesis Hy: p = 0 using the test statistic Z = C(r)»N — 3 where Z
~ N(0, 1). Substituting into equation (5) yields

VN = 3C(p))=Z, + Z; (27)

from which the required sample size or power may be obtained. Obviously,
to detect a true correlation p, greater than 0.50 [C(p,) = 0.549], a small N
would suffice. Note that Hy: p = 0 is equivalent to a null hypothesis that the
regression coefficient is also zero.

Two Independent Correlations

In detecting a relevant difference in correlations H;: u; = [C(pe) — Clpo)| #
0 obtained from two independent samples, the null hypothesis Hy: @y = 0 is
tested using the statistic Z = C(r,) — C(r)/Zy where 2§ = N1 (Q:' + Q¢
fl. — 3 = Q.N, n. — 3 = Q.N, and where under H;,, Z ~ N(0, 1). The
correlations r, and r, are obtained from two samples of sizes n, and n. such
as re = Tewy and r, = 7y, for variables u and v in groups e and c.
Substituting we = 0, &, = |C(pe) — Clpo)|, and 2% = 3§ into equation (5)

yields
N|C(pe) — Clpe
R @

which can then be solved for total sample size (N) or power (Zz). Note that
N from equation (28) will actually be six units less than that actually needed
sincen, + n, — 6 = N.
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Table 1 Total Sample Size (N) from Equation (29)® as a Function of K

(Where u, = Ko) for Various a (One-sided) and B

a = 0.05 a = 0.05 o= 0.025 = 0.025 a = 0.01

K 8= 020 B8 =0.10 B=0.10 B = 0.05 B = 0.05
0.01 61,852 85,674 105,106 129,962 157,690
0.025 9,898 13,708 16,818 20,794 25,232
0.05 2,476 3,428 4,206 5,200 6,308
0.075 1,100 1,524 1,870 2,312 2,804
0.10 620 858 1,052 1,300 1,578
0.125 39 550 674 832 1,010
0.15 276 382 468 578 702
0.175 202 280 344 426 516
0.20 156 216 264 326 396
0.25 100 138 170 208 254
0.3 70 96 118 146 176
0.4 40 54 66 82 100
0.5 26 36 44 52 64
0.6 18 24 30 38 44
0.7 14 18 22 28 34
0.8 10 14 18 22 26
1.0 8 10 12 14 16

*Rounded to the next highest even number

PFor a two-sided determination at level «, the table should be used with the value a/2.

Table 2 Power (1 — B) from Equation (30) as a Function of K and Total

Sample Size N (where u; = Ko) with @ = 0.05 (one-sided)

K

N 0.05

0.10

0.15

0.20

0.25

0.30

0.40

0.50

0.75

1.00

10 0.0685
20 0.0776
30 0.0852
40 0.0920
50 0.0983
60 0.1042
70 0.1100
80 0.1155
90 0.1209
100 0.1261
200 0.1741
300 0.2180
400 0.2595
500 0.2991
750 0.3914
1000 0.4745
2500 0.8037
5000 0.9707

0.0920
0.1155
0.1363
0.1556
0.1741
0.1920
0.2094
0.2265
0.2431
0.2595
0.4087
0.5347
0.6387
0.7228
0.8629
0.9354
0.9996
0.9999:

0.1209
0.1650
0.2051
0.2431
0.2795
0.3145
0.3483
0.3808
0.4122
0.4424
0.6831
0.8297
0.9123
0.9563
0.9931
0.9990
0.9999
0.9999

0.1556
0.2265
0.2913
0.3519
0.4087
0.4618
0.5113
0.5572
0.599%6
0.6387
0.8817
0.9656
0.9907
0.9977
0.9999
0.9999
0.9999
0.9999:

0.1964
0.2991
0.3914
0.4745
0.5489
0.6147
0.6724
0.7228
0.7663
0.8037
0.9707
0.9964
0.9996
0.9999
0.9999
0.9999
0.9999
0.9999

0.2431
0.3808
0.4993
0.5996
0.6831
0.7514
0.8065
0.8504
0.8851
0.9123
0.9953
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.3519
0.5572
0.7074
0.8119
0.8817
0.9269
0.9556
0.9734
0.9842
0.9907
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.4745
0.7228
0.8629
0.9354
0.9707
0.9871
0.9944
0.9977
0.9990
0.9996
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.7663
0.9563
0.9931
0.9990
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.9354
0.9977
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
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Two Related Correlations

In detecting a relevant difference between two correlations r, and r, obtained
from a single sample of size N, the covariance Cov[C(r,), C(r;)] must be
considered. This obviously applies when the two correlations involve a
common variable, e.g., r, = 7,, and r, = r,,, for variables u, v, and w. It also
applies when the two correlations do not have a variable in common, e.g.,
re = Yty and ry = r,, for variables u, v, w, and x, due to the other
intercorrelations pyw, Puz, Pow, and p,,. Due to the complexity of the
covariance expressions as given in [21}, the test statistics and the solutions
for sample size and power will not be presented, although the latter are also
obtained directly from the basic equation (1).

FURTHER SIMPLIFICATION AND TABLES

In many of the situations just described, the equations for N and Z ; resulting
from equations (3) and (4) can be simplified if the difference 6 = |u, — wo|
is presented as a function of the standard deviation of the basic observations.
If 6y = 0, = o, and 8 is specified as § = Ko, then the equations for sample
size and power simply reduce to

N = [(Z, + Zp)/K]? (29
Zs=KVN -2, (30)

where K = 6/g. Table 1 presents total N from equation (29) as a function of
K for various a and g levels. Table 2 presents power obtained from Z, using
equation (30) as a function of K and total N for « = 0.05 (one-sided). If u,
= 0 then 6 = |u,| and equations (29) and (30) simply give the sample size
(or power) where the minimal relevant difference is expressed as a fraction
(K) of the standard deviation of the observations.

These simplified equations are applicable to most of the procedures
presented in this paper. Table 3 presents the expressions for K required for
these various statistical tests. This table can be used with Tables 1 and 2 or
with equations (29) and (30) directly. In each case, the corresponding explicit
equation in the preceding text is cited.

ACKNOWLEDGMENT
The author wishes to thank Lawrence W. Shaw, James Schlesselman, and Paul Canner for
their comments and discussions on many aspects reviewed in this paper.

REFERENCES

1. Lachin J, Marks J, Schoenfield L, et al: Design and Methodological Considerations
in the National Cooperative Gallstone Study: A Multi-center Clinical Trial.
Controlled Clinical Trials, in press.

2. Lachin J: Sample size considerations for clinical trials of potentially hepatotoxic
drugs. In Davidson, CS, Levy, CM, and Chamberlayne, EC, eds: Guidelines for
Detection of Hepatotoxicity Due to Drugs and Chemicals. Washington, DC: U.S.
Department of H.E.W., National Institutes of Health, NIH Publication No. 79-13,
pp. 119-130, 1979.



Sample Size Determination 113

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Lachin JM: Statistical inference in clinical trials. In Tygstrup N, Lachin ], Juhl E,

eds: The Randomized Clinical Trial and Therapeutic Decisions. New York: Dekker,
1981 (in press).

. Shaw LW, Cornfield J, Cole SM: Statistical problems in the design of clinical

trials and interpretation of results. In Deutsch, E, ed: Thrombosis: Pathogenesis
and Clinical Trials. New York: Schattauer Verlag, pp. 191-202, 1973.

. Freiman JA, Chalmers TC, Smith H, Kuebler R: The importance of Beta, the

Type Il error and sample size in the design and interpretation of the randomized
controlled trial. N Engl | Med 299:690-694, 1978.

. Snedecor GW, Cochran WG: Statistical Methods, 6th ed. Ames: lowa State

University Press, 1967.

. Fleiss J: Statistical Methods for Rates and Proportions. New York: Wiley, 1973.
. Halperin M, Rogot E, Gurian ], Ederer F: Sample sizes for medical trials with

special reference to long term therapy. | Chron Dis 21:13-23, 1968.

. Schork MA, Remington RD: The determination of sample size in treatment

control comparisons for chronic disease studies in which drop-out or non-
adherence is a problem. | Chronic Dis 20:223-239, 1967.

Johnson NL, Kotz S: Distributions in Statistics: Continuous Univariate Distributions
2. New York: Wiley, 1970.

Cochran WG, Cox GM: Experimental Designs. New York: Wiley, 1964.

Sokal RD, Rohlf FJ: Biometry: The Principles and Practice of Statistics in Biometric
Research. San Francisco: Freeman, 1969.

Miettinen OS: The matched pairs design in the case of all-or-none responses.
Biometrics 24:339-352, 1968.

Lachin J: Sample size determinations for r X ¢ comparative trials. Biometrics
33:315-324, 1977.

Cutler SJ, Ederer F: Maximum utilization of the life table method in analyzing
survival. | Chronic Dis 8:699-712, 1978.

Breslow NE: Analysis of survival data under the proportional hazards model. Int
Stat Rev 43:45-58, 1979.

Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N,
McPherson K, Peto J, Smith PG: Design and analysis of randomized clinical trials
requiring prolonged observation of each patient: II. Analysis and examples. Br
J Cancer 35:1-39, 1977.

Gross AJ, Clark VA: Survival Distributions: Reliability Applications in the Biomedical
Sciences. New York: Wiley, 1975.

Pasternack BS, Gilbert HS: Planning the duration of long-term survival time
studies designed for accrual by cohorts. ] Chronic Dis 24:681-700, 1971.

George SL, Desu MM: Planning the size and duration of a dlinical trial studying
the time to some critical event. | Chronic Dis 27:15~24, 1974,

Dunn O], Clark V: Correlation coefficients measured on the same individuals. |
Am Stat Assoc 64:366-377, 1969.



