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ABSTRACT: The importance of sample size evaluation in clinical trials is reviewed and a 
general method is presented from which specific equations are derived for sample 
size determination or the analysis of power for a wide variety of statistical proce- 
dures. The method is discussed and illustrated in relation to the t test, tests for 
proportions, tests of survival time, and tests for correlations as they commonly occur 
in clinical trials. Most of the specific equations reduce to a simple general form for 
which tables are presented. 
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INTRODUCTION 

It is widely recognized among statisticians that the evaluation of sample 
size and power is a crucial element in the planning of any research venture. 
Often it becomes necessary for the statistician to introduce these basic 
concepts to collaborators who may be aware of the problem but who do not 
understand the basic statistical logic. In this paper a simple expressior\ is 
presented that can be used for sample size evaluation for a wide variety of 
statistical procedures and that has often been employed in collaboration 
with medical researchers in the conduct of clinical trials [l]. The method 
presented is quite general and, it is hoped, may be applied by clinician and 
statistician alike in a variety of research settings. 

When conducting a statistical test, two types of error must be considered: 
Type I (false positive) and Type II (false negative), with probabilities (Y and 
p, respectively. In the following we will consider the general family of 
statistics, say X, that are normally distributed under a null hypothesis (H,) 
as N&, Ci) and under an alternative hypothesis (H,) as N(pl, 2:); where p1 
> p. or pl < p. and where Ci and C: are some function of the variance cr* 
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F i g u r e  I The distribution of a statistic X with variance ~2 under the null hypothesis 
H0: /~ = /~0, i.e., the curve P(XIH0), and that under the alternative 
hypothesis Hi: /~ = ~1 or the curve P(XIHI), and the probabilities of Type 
I error (c~) and Type II error (/3), where X~ = /~0 + Z ~ .  

of the ind iv idua l  obse rva t ions  and  the sample  size N. 1 G iven  these  distri-  
bu t ions  one can then  d e t e r m i n e  c¢ and  fl as s h o w n  in Figure 1. 

In a clinical trial the p a r a m e t e r  /~ is the t rea tment -cont ro l  difference in 
the ou tcome  m e a s u r e  of interest ,  e.g.,  the m e a n  difference on some  meas-  
urable  pha rmaco log ic  effect such as se rum cholesterol,  or the difference in 
the p ropo r t i on  d i sp lay ing  an event  such as heal ing.  In such cases /~0 is 
usual ly  zero and / z l  is specif ied as the min ima l  clinically re levant  therapeut ic  
difference.  (For a more  basic  in t roduc t ion  to these  concepts ,  see [2-4]). 

W h e n  the statistical test  is conduc ted ,  the p robab i l i t y  of T y p e  I error,  c~, 
is specif ied b y  the inves t iga tor .  H o w e v e r ,  the p robab i l i ty  that  a s ignif icant  
result  will be  ob ta ined  if a real dif ference (/~1) exists (i.e.,  the p o w e r  of the 
test, 1 - /3) d e p e n d s  largely on the total s ample  size N. As one increases  N 
the sp read  of the d i s t r ibu t ions  in Figure I decreases ,  i .e. ,  the curves t ighten;  
thus /3  decreases  (power  increases).  Thus  if the statistical test fails to reach 
significance,  the p o w e r  of the test  becomes  a critical factor in reaching an 
inference.  It is not  wide ly  apprec ia ted  that  the fai lure to achieve  statistical 
s ignif icance m a y  often be  related more  to the low p o w e r  of the trial than  to 
an  actual lack of difference b e t w e e n  the compe t ing  therapies .  Clinical trials 
wi th  i nadequa t e  s ample  size are thus d o o m e d  to fai lure before  they  beg in  
and  serve only to confuse  the issue of de t e rmin ing  the mos t  effective the rapy  
for a g iven  condi t ion.  Thus  one  should  take s teps to ensure  that  the p o w e r  
of the clinical trial is sufficient to just ify the effort involved.  

Converse ly ,  if the p o w e r  of the trial in detect ing a specif ied clinically 
re levant  di f ference (/~1) is sufficiently h igh ,  say 0.95, failure to achieve  
significance m a y  p rope r ly  be  in te rp re ted  as p r o b a b l y  indica t ing  negl igible  
r e l evan t  d i f fe rence  b e t w e e n  the c o m p e t i n g  therap ies .  Thus  the p r o p e r  
in te rpre ta t ion  of a " n e g a t i v e "  result  is ba sed  largely u p o n  a cons idera t ion  
of the p o w e r  of the exper iment .  

~The n o t a t i o n  N ( ~ ,  X2) d e n o t e s  t he  n o r m a l  d i s t r i b u t i o n  w i t h  m e a n  ~ a n d  v a r i a n c e  ~;~. If X 
N(p., ~2) t h e n  Z = (X - p.)~-~ is  d i s t r i b u t e d  as N(0,  1), t he  l a t t e r  b e i n g  w i d e l y  t a b u l a t e d  as  

the  s t a n d a r d  n o r m a l  d i s t r i b u t i o n .  
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These  poin ts  have  been  i l lustrated by  Freiman et al. [5] w h o  showed  that 
of 71 recent  clinical trials that reached a negat ive result,  67 had  p o w er  less 
than 0.90 in detect ing a modera te  (25%) therapeut ic  improvement .  Their  
conclusion is that m a n y  of the therapies  s tudied  were  not  g iven a fair test 
s imply  due  to inadequa te  sample sizes and,  thus,  inadequa te  power .  

S A M P L E  S I Z E  A N D  P O W E R  

The p rob lem in p lann ing  a clinical trial is to de te rmine  the sample size N 
requ i red  such that  in testing H0 with stated probabi l i ty  of Ty p e  I error  ~, 
the probabi l i ty  of Type  II error  is a desired small level/3. The parameters  of 
the p rob lem are ~, iS,/~0,/~1, ]~02, and ~ .  

Since the variances 22 are funct ions  of N, the sample size requ i red  is that 
which  s imul taneous ly  satisfies the equali t ies Pr(Z > Z~) = c¢ if H0 is true 
and  Pr(Z > Z~) = 1 - /3 if H1 is true; where  Z~ is the staildard normal  
devia te  at the o~ significance level (e.g., Z~ = 1.645 for ~ = 0.05, one-sided)  
and where  Z = (X - ~0)2 -1 is the s imple statistic one would  use in testing 
Ho; where  Z - N(0, 1) if H0 is t rue (see footnote  1). 

It can easily be  s h o w n ,  however ,  that the sample size that satisfies these 
equali t ies also satisfies the equali ty 

I~, - ~01 = z~:~0 + z ~ : ~ ,  (1) 

The term Z~/2 is employed  for a two-tai led test. Derivat ions for part icular  
cases are g iven in Snedecor  and Cochran [6, p. 111] and Fleiss [ 7, p. 29], 
among others.  

This basic re la t ionship can readily be  grasped from Figure 1. To relate 
equa t ion  (1) to Figure 1, note  that the critical value of X at the o~ level of 
significance is X~ = /z0 + Z ~ 0 .  On e  can thus readily der ive equa t ion  (1) 
f rom Figure 1 where  the "d i s t ance"  ]/~ - ~01 is the sum of two parts ,  ~K~ - 
/~0] = Z~]~0 and ]~1 - X~I = Za~,,  where  Z~ results f rom the specification X~, 
/~1, and ~1. 

This equa t ion  can then  be used  to evaluate sample size or p o w er  for the 
most  commonly  used statistical tests once ~0, ~1, and c~ have been  specified. 
The three basic ques t ions  one can ask are 

1. What  sample size is requi red  to ensure  power  1 - / 3  of detect ing a relevant 
d i f f e r ence /~?  

2. What  is the power (Z~) of the exper iment  in detect ing a relevant  difference 
k~ w h e n  a specific sample size N is employed?  

3. What  difference i~ can be detected wi th  power  1 - / ~  if the exper iment  is 
conduc ted  wi th  a specified sample size N? 

Usually, ques t ion  1 is employed  in p lanning  an exper iment  and  ques t ion  2 
is employed  in evaluat ing the results of an exper iment .  Ques t ion  3 can be  
employed  in e i ther  case. 

For the de te rmina t ion  of sample size (quest ion 1) one  s imply solves 
equa t ion  (1) for  N once the expression for the variances Xz have been  
obtained.  In m a n y  cases, ~z will be a funct ion of the form ~2 = o.Z/N, where  
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o -2 is the var iance  of the ind iv idua l  m e a s u r e m e n t s  and  N is the total sample  
size. In this case 

IId~l - -  ['~0 I = (Z~o'olX/N) + (Zao-,Ix/N) (2) 

Solving for total sample  size N one obta ins  s imply  

N= [Z,~o'o + Z~o',12 
[ ~-~---~0 J (3) 

Likewise ,  to de t e rmine  p o w e r  (quest ion 2) one solves for Z~ to obta in  f rom 
(2) 

X / ~  I/Xl - /Xo t - Z~o-0 
Z~ = (4) (4) 

o-1 

Power  (1 - /3) can then  be  de t e rmined  f rom the value Z ,  b y  referr ing Z ,  to 
tables of the normal  d i s t r ibu t ion  where  values  Z~ < 0.0 indicate  p o w e r  < 
0.50. 

Similarly, the m i n i m a l  detectable  difference wi th  p o w e r  1 - ]3 g iven  a 
sample  size N (quest ion 3) is ob ta ined  b y  solving equa t ion  (2) for /~,. In 
some  cases an explicit solut ion is ob ta ined ,  whereas  in others ,  e.g.,  for 
p ropor t ions ,  an i terat ive p rocedure  is requi red  since bo th  ~,  and  o- will be  
funct ions  of the same paramete rs .  Thus we  shall only consider  ques t ions  1 
and  2 in the following.  

Since equat ions  (3) and  (4) follow obvious ly  f rom equa t ion  (2), it is often 
conven ien t  to express  the basic  re la t ionship  in the fo rm 

- = zoo -0  ÷ z o-, (5) 

which can then be solved for N or Za. This form wil l  be employed in cases 
where the basic equations equivalent to equations (3) and (4) become 
cumbersome. 

The following sections demonstrate how these simple relationships can 
be employed with Student's t tests, chi-square tests for proportions, analyses 
of survival time, and tests for correlations. In each case, the explicit 
equations for sample size and power computation are presented wi th 
examples. 

Most procedures allow unequal group sizes reflected in the sample 
fractions Qe and  Qc where  n e = QeN, nc = QcN and  Qe ÷ Q¢ = 1. In the 
fol lowing,  the subscr ip ts  e and  c are used  to deno te  the exper imenta l  and  
control g roups  where  the total sample  size then  is N = n e -I- no. Obvious ly ,  
Qe = Qc = 0.5 for equal -s ized  groups .  For these  procedures  it is well k n o w n  
that  p o w e r  is m a x i m i z e d  and  total sample  size m i n i m i z e d  for equal -s ized  
groups ,  but  due  to ethical cons idera t ions ,  unequa l - s i zed  g roups  are at t imes 
desirable.  

Virtually all these m e t hods  can be  used  wi th  a s imple  calculator. To use  
these me t hods  one m u s t  first specify the pa ramete r s  of the p rob lem.  In 
addi t ion  to Z~ and  Z~, and  the sample  fractions Qe and  Qc, the specific 
pa rame te r s  of that  test  m u s t  be  specified. For example ,  for the t test of two 
i n d e p e n d e n t  g roups ,  the g roup  means  ve and  vc are requi red  as well as the 
s tandard  dev ia t ion  of the measures ,  o-. For some  other  statistical p rocedures  
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a separate standard deviation is not required since the variance will be a 
function of the expectation and/or the sample size alone. 

ADDITIONAL CONSIDERATIONS 

Sample size evaluation for a clinical trial is almost always a matter of 
compromise between the available resources and the various objectives, 
such as safety with small effects desirable and efficacy with large effects 
desirable, [1, 2]. This leads to a recursive process whereby one cycles 
through various specifications of the desired detectable effects and considers 
the resulting sample size in relation to the objectives and the resources 
available. Eventually one reaches a sample size and statement of objectives 
that are consistent with each other and the available resources. 

In this process, however,  attention should also be given to the operational 
aspects of the trial. Foremost among these are the factors related to the 
administration of the program of therapy and the evaluation of outcome. As 
a simple example, consider a clinical trial of an ulcer healing agent with 
healing assessed endoscopically after 4 weeks. Noncompliance, dropouts,  
and lack of control of other factors such as diet, drinking, and smoking may 
all combine to reduce the observed healing rate and thus reduce the 
statistical power of the trial. Likewise, failure to set uniform standards for 
endoscopic examination and criteria for healing will increase the variability 
of the outcome measurement,  again leading to reduced power.  

Among these, a major consideration is the rate of dropouts,  patients who 
terminate therapy for reasons related neither to the disease under  treatment 
nor the therapy. If an R dropout  rate is expected, a simple but  adequate 
adjustment is provided by Nd = N / ( 1  - R) 2 where N is the sample size 
calculated assuming no dropouts and Nd that required with dropouts [1]. 
Likewise, to evaluate power one would use equations and tables with N = 
Nd(1 -- R) 2 where Nd is the observed or expected sample size. Additional 
procedures are described in [8] and [9]. 

STUDENT'S t TEST 

In its most general form, Student's t is used to test the hypothesis that the 
mean of a normal variable, v, equals some specified value H0:/~0 = ~0 
against some alternative H i : / ~  = vi, Vl ~ v0, when the variance is unknown. 
The test statistic is of the form t = V ' N ( x  - I~o)/S where x is the sample 
mean with standard error S2/N,  S 2 being the unbiased sample estimate of 
the variance o -2 on N - 1 degrees of freedom (df). The distribution of t 
becomes increasingly close to that of a standard normal variable as df 
increases, at least 30 df being required for the approximation to be adequate 
[10]. Thus equations (1) through (4) can be employed to yield an approximate 
evaluation of sample size and power. 

This approach, however,  will tend to overestimate power for given S 2 
and N, and thus it will tend to underestimate the required sample size, 
although this effect is increasingly negligible for increasing df. An adequate 
adjustment is obtained by the correction factor f = (df + 3)/(df + 1), where 
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fN patients are actually employed after N is obtained from equat ion (3), or, 
alternately, by  N/f used in equat ion (4) when  solving for power  [6, p. 114]. 

For those who  desire an exact solution, an iterative procedure is required 
and is described,  with brief tables, in Cochran and Cox [11, p. 19]. Under  
this procedure,  one obtains a trial value for N that is then adjusted in light 
of the resulting degrees of freedom. 

In sample size or power  evaluation for the t test a critical feature is the 
specification of 0-2. For the other tests considered later (proport ions,  etc.) the 
variances are not specified separately. Usually a value for 0-2 can be specified 
based on prior  experiments us ing the same measurements ;  in these cases it 
is best  to use the largest value 0-2 expected. Often a pilot s tudy  is helpful to 
provide  an estimate of 0-" under  the condit ions to be used in the experiment 
to be conducted.  Of course, if power  is to be evaluated after an experiment 
was conducted with a given N, then the obtained estimate S 2 of the variance 
should be employed.  

A Single Mean 
The most  basic form of the t test is the test of H0:/x0 = ~'0 for some a priori 
specified mean  value v0 with variance 0-~, against  an alternative H,: /~1 = / d l  

=~ 1,0 with variance o-2. The test statistic is as presented where  x is the mean 
of a single sample of observat ions with sample variance S 2. Given specified 
~, fl, /~0, /xl, 0-0, and 0-1, the  equat ions for sample size N or power  (Z~) are 
exactly as presented in equat ions  (3) and (4), respectively. 

Two Independent Groups 
The t test is most  widely used to test the null hypothes is  that the means of 
two independen t  groups  are equal, H0 :~0  -- (re - vc) = 0, based on two 
separate samples of sizes ne = Q ~ /  and n~. = Qd~/, Q,. + Qc = 1. The 
fractions Qe and Qc are the sample  fractions and refer s imply to the 
propor t ion  of patients in each group,  N being the total sample size. The test 
statistic employs the pooled estimate S 2 of the common  variance o-~ = o-2 = 
0 -2 with N - 2 dr. It is well known  that power  is maximized for Q~ = Qc = 
0.5. 

U n d e r  H, ,  /~, is specified as the min imal  re levant  difference to be 
detected, /~, = lye - Vc[ ¢ 0, and it follows that E0 2 = E~ = 0-2(Qe' + Q~')/N. 
Using equat ion (1) the equat ions  for total N and Za are 

0-2(Q e '  + Q¢') (z~ + Z~) 2 
N = (6) 

Za = V' -~ (7) 0- Q~ + Q ; '  

where for equal sample sizes (Q~-I + Q~-I) = 4.0. 
For example, consider an experiment  where  o- is known  not to exceed or 

known  to be o- = 1.0 and it is desired to detect a difference/~1 = (re - re) 
= 0.20. From equa t ion  (6), to ensure  a 90% chance of detect ing this 
difference (Z~ = 1.282) with c~ = 0.05 (one-sided,  Z~ = 1.645), N = 858 is 
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requi red .  This  wou ld  yield a t test  on 856 (N - 2) df, and  thus wi th  the 
correct ion factor  f = 1.006, the final sample  size des i red  is fN = 860. 

Suppose ,  howeve r ,  that  the expe r imen t  was  actually conduc ted  wi th  only 
102 pat ients .  The  correct ion factor is 1.02 and  equa t ion  (7) is emp loyed  wi th  
N = (102/f) = 100, to yield Z~ = -0 .645 ,  thus indica t ing  that  for N = 100 the 
expe r imen t  h a d  abou t  26% power .  If the exper imen t  p roduced  a nega t ive  
result ,  howeve r ,  equa t ion  (6) could also be  used  to s h o w  that  wi th  N = 100 
there was  a lmost  100% p o w e r  in detect ing a difference/~,  = 1.0 (Za = 3.355). 
Thus  one  could safely rule out  a difference on the order  of /~,  = 1.0. 

Paired Observations 
In the event  that  the observa t ions  in the two g roups  are l inked together  by  
pa i r ing  or repea ted  measu re s  at t imes a and  b on the same  pat ient ,  the t test 
is conduc ted  us ing  the m e a n  difference d = Xb - X~ wi th  a s t andard  error 
~2 = cr~dN where  o '~=  20~(1 - p) if c ry=  o-~ = o -~, p be ing  the p repos t  
correlation.  From equa t ion  (1) the equa t ions  for N and  Za for detect ing a 
t rue d i f fe rence /z l  = Vb -- Va are: 

(Z + 
m - (8) 

Z~ = (9) 
Or d 

which  are equ iva len t  to us ing  equat ions  (3) and  (4) wi th  o-,~ in place of o-0 
a n d  o-~. 

In this ins tance,  often an es t imate  of o'2 is avai lable  f rom pr ior  experience.  
If not ,  an  es t imate  of cr 2 can be  used  wi th  an es t imate  of the correlat ion p. 
No te  that  pa i r ing  is only  efficient if p > 0, i .e. ,  there  is pos i t ive  correlat ion 
b e t w e e n  the a and  b m eas u rem en t s .  If no  es t imate  of p is available,  it is 
safest  to a s s um e  p = 0 or, nominal ly ,  p = 0.10. 

Two Independent Groups with Paired Observations 
A c o m m o n  related des ign  is to emp loy  two t rea tments  in samples  of sizes 
ne and  nc where  each pa t i en t  also serves as his o w n  control wi th  measures  
at t imes  a and  b such as before  and  after t reatment .  In this case the test  
statist ic is the same  as for two i n d e p e n d e n t  g roups  where  the p repos t  
differe_nces for  eada pa t i en t  are used  as the ind iv idua l  observa t ions ;  i .e. ,  
Xe = de and  X~e = de; and  where  the pooled  esldmate of the var iance  of the 
d i f fe rences  (S~) is e m p l o y e d .  The  p r o b l e m  is f o r m u l a t e d  as /xl = I ~ e -  
3c I, 8e = (Veb -- V~) ,  3c = (Vc, -- Vc~), with  y2 = o.~(Q-d~ + Q~ ' ) /N .  This yields 
equa t ions  equ iva len t  to equat ions  (6) and  (7) wi th  Cro subs t i tu ted  for or. 

PROPORTIONS 
In expe r imen t s  whe re  the basic  ou tcome  is a qual i ta t ive var iable ,  such as 
success versus  failure,  the data are usual ly  expressed  as a p ropor t ion ,  e.g.,  
the p r o p o r t i o n  of successes,  or s imp ly  p. The  exact p robab i l i ty  d is t r ibu t ion  
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of such  a p r o p o r t i o n  is the  b i n o m i a l  d i s t r i b u t i o n  tha t  ha s  p a r a m e t e r s  N 
( s a m p l e  size) a n d  ~r ( the  t rue  p o p u l a t i o n  p r o p o r t i o n ) .  For la rge  N (i .e. ,  
a symp to t i c a l l y )  the  b i n o m i a l  d i s t r i b u t i o n  m a y  b e  a p p r o x i m a t e d  b y  a n o r m a l  
d i s t r i b u t i o n  w i t h  m e a n  /z = ~r a n d  v a r i a n c e  ~ = ~r(1 - ~r)/N. T h u s ,  in 
e x p e r i m e n t s  i n v o l v i n g  tes ts  for  p r o p o r t i o n s ,  the  bas i c  e q u a t i o n s  m a y  be  
u s e d  for  the  d e t e r m i n a t i o n  of s a m p l e  s ize  a n d  p o w e r .  

A Single Proportion 

In o n e - s a m p l e  p r o b l e m s  tha t  y ie ld  a s ing le  p r o p o r t i o n ,  the  h y p o t h e s i s  Ho:/~0 
= ~'0 is t es ted  w h e r e  o n e  w i s h e s  to de tec t  a cl inical ly r e l evan t  a l t e r n a t i v e  
H~:~I  = 7r1 w h e r e  7rl > Tr0 or ~-~ < ~r0. G i v e n  a p r o p o r t i o n  p f r o m  a s a m p l e  
of s ize  N,  the  test  s ta t i s t ic  e m p l o y e d  is Z = (p - ~r0)/E0 w h e r e  E~ = ~r0(1 - 
1ro)/N a n d  w h e r e  Z - N(0 ,  1) if H0 is t rue .  As  an  e x a m p l e ,  in  a cohor t  fo l low-  
u p  s tudy ,  one  m i g h t  test  tha t  the  k y e a r  m o r t a l i t y  equa l s  tha t  o b t a i n e d  in  a 
p r e v i o u s  ( and  c o m p a r a b l e )  cohor t ,  w h e r e  7r0 is tha t  o b s e r v e d  in  this  la t ter  
cohor t .  

For the  d e t e r m i n a t i o n  of s a m p l e  s ize  or  p o w e r  one  s u b s t i t u t e s  o-2 = fro(1 
- 7r0) a n d  o-2 = ~1(1 - ¢rl) in to  e q u a t i o n  (3) or  (4); the  e q u a t i o n s  for  s a m p l e  
s ize  N a n d  p o w e r  Z~ b e i n g  

Z . ~ / ~ o  (1 - ~'o) + Z , ,~ /~ ' ,  (1 - ~-1).] ~ 
N = - -  J (10) 

7r 1 7]" 0 

- I - z x/;,o ( 1  - 
= (11) 

Z~ X/~r~ (1 - ~r~) 

Two Independent Proportions 

In the  case of t w o  i n d e p e n d e n t  s a m p l e s  of s izes  ne a n d  no, the  nul l  h y p o t h e s i s  
H0:/~0 = (~'e - ~r¢) = 0 is t e s t ed  w i t h  the  s ta t i s t ic  Z = (pe - p~)/S w h e r e  Pe 
a n d  Pc are  the  p r o p o r t i o n s  of e v e n t s  in the  two  s a m p l e s ,  tr0 ~ is e s t i m a t e d  as 
S 2 = (n~ -1 + nc l )p(1  - P), P = Q e p ~  + Qe pc, a n d  w h e r e  u n d e r  H0, Z - N(0,  
1). 

For the  d e t e r m i n a t i o n  of s a m p l e  s ize  a n d  p o w e r ,  the  m i n i m a l  r e l evan t  
difference/.~1 = Iwe - ¢rc I is t h e n  spec i f ied .  S ince  the  v a r i a n c e  wil l  d e p e n d  
on  the  va lue s  spec i f i ed  a n d  no t  o n  the  a b s o l u t e  d i f fe rence ,  b o t h  7re a n d  ~r~ 
m u s t  b e  speci f ied .  Th i s  y i e lds  o-~ = ['/re( L -  "/re) Q e  1 +_Vc(1 - rrc) Q ~ - q -  
U n d e r  the  nul l  h y p o t h e s i s  H0:zr~ = zr¢ = It, ~0 = 0 a_nd zr i s  spec i f i ed  as rr 
= Qezre + Qczrc. Th is  t h e n  y i e lds  o'~ = (Q;~ + Q-~)~r (1 - rr). S u b s t i t u t i n g  
in to  e q u a t i o n  (5) y i e lds  the  w e l l - k n o w n  f o r m u l a  

X/~l~re - 1rcl = Z~X/~(1 - ~ ) ( Q e  ~ + Q~-') 

+ ZaX/rre(1 -- ~r~)Qe ~ + ~rc(1 - ~rc)Q~ 1 (12) 

w h i c h  can t h e n  b e  so lved  for  N or Za. 
Th i s  e x p r e s s i o n  can_ b e  s__implified, h o w e v e r ,  b y  n o t i n g  tha t  for  equa l  

s a m p l e  s izes  tr0 2 = 4rr (1 - rr) is a lways  g rea t e r  t h a n  or equa l  to o-2 = 2~re(1 
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- ~re) + 2¢rc(1 - 7rc). This then  allows use  of the s impler  equa t ions  

(Z~ + Z~)24~(1 - ~) 
N = (13) 

_ 

Z~ - Z~ (14) 
2x/~-(1 - W) 

Ha lpe r i n  (personal  c o m m u n i c a t i o n  to Paul Canner)  has  s h o w n  that  the 
a p p r o x i m a t i o n  (13) will yield total s ample  sizes no greater  than  Z~ + 2Z~Za 
a b o v e  that  ob t a ined  f rom equa t ion  (12); i .e. ,  to w i th in  5.86 uni ts  for o~ = 
0.05 (one-s ided) , /3  = 0.10. 

In u s ing  these  formulas ,  note  that  ~r d e p e n d s  on  the actual values  7r~ and  
~'c s p e c i f i e d u n d e r H 1  and  not  just on the re levant  difference t~l = [~'e - 7rd- 
Also, since ~'(1 - 7r) is at a m a x i m u m  for 7r = 0.50, it then  follows that  for 
fixed pos i t ive  /~1, as 7re gets smaller,  the requi red  sample  size also gets 
smaller  and  p o w e r  increases  a s s u m i n g  7rc < 7re). In such p rob l ems ,  therefore,  
it is safest  to speci fy  the largest  realistic va lue  for 7rc (where  7re > Tr~ and,  ~-~ 
< 0.50) so as not  to unde re s t i m a t e  sample  size or overes t ima te  power .  

For example ,  s u p p o s e  we  w i s h e d  to conduct  a control led clinical trial of 
a n e w  the rapy  and  the rate of successes in the control g roup  is not  expected  
to be  grea ter  than  7rc = 0.05. Further ,  we  would  cons ider  the n e w  the rapy  
to be  s u p e r i o r - - c o s t , r i s k s  and  other  f_actors_considered--if ~r~ = 0.15, thus 
y ie ld ing  t~l = 0.10, Ir = 0.10, and  47r(1 - 7r) = 0.36. Us ing  equa t ion  (13) 
wi th  ot = 0.05 (one-s ided)  and  ~8 = 0.10 yields N = 310 ( rounded  up  f rom 
308.4); the m o r e  prec ise  formula  (12) yields  N = 306 ( rounded  f rom 304.6). 

Suppose ,  howeve r ,  that  the expe r imen t  was  conduc ted  wi th  only N = 
100. Us ing  equa t ion  (14) indicates  that  the p o w e r  of the expe r imen t  in 
d e t e c t i n g / ~  = 0.10 wi th  7rc = 0.05 is only  51% (Z~ = 0.022). If a nega t ive  
result  was  ob ta ined ,  howeve r ,  one  m i g h t  wish  to d e t e r m i n e  the p o w e r  of 
h a v i n g  detec ted  larger differences,  s a y / ~  = 0.40 for 7re = 0.05. This yields  
Tre = 0.45, ¢r = 0.25, and  2X/~'(1 - ~)  = 0.886. From equa t ion  (14) we  find 
that  N = 100 yields  99.9% p o w e r  (Z a = 2.87). Thus a t rue difference of this 
m a g n i t u d e  could conf ident ly  be  ruled out. 

For fu r the r  i l lus t ra t ion,  Lachin  [2] u sed  these  p rocedures  to discuss  
s amp le  size cons idera t ions  for  FDA Phase  II and  III clinical trials of n e w  
drugs ,  and  these  m e t h o d s  have  been  used  in a var ie ty  of clinical trials. 
Addi t ional  references  include [1, 5, 7, and  8]. 

T h e  A n g u l a r  T r a n s f o r m a t i o n  

The p r o c e d u r e s  jus t  desc r ibed  are usua l ly  p re fe r red  s ince the  tests for 
p ropo r t i ons  us ing  the normal  app ro x ima t ion  to the b inomia l  are equiva len t  
to the usual  X 2 tests (see u n d e r  Discuss ion  following).  Others  [12], howeve r ,  
have  e m p l o y e d  the  angu la r  t r ans format ion  A(p) = 2 arcsin V ~ ,  whe re  A(p) 
is expressed  in rad ians ,  no t  degrees.  2 G iven  a p ropo r t i on  p wi th  b inomia l  

2For those  w h o s e  calculators p rov ide  the  s in  func t ion  in degrees ,  the  convers ion  factor is 
arcsin (radians) = (0.017453) arcsin (degrees).  
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expecta t ion  7r, then  A(p) is app rox ima te ly  normal ly  d i s t r ibu ted  as N[A(rr), 
N-l ] .  Since the var iance  (~2 = 1/N) is n o w  i n d e p e n d e n t  of the expecta t ion,  
the resul t ing sample  size and  p o w e r  equa t ions  are fur ther  simplif ied.  This  
approach ,  howeve r ,  is not  as accurate as that  descr ibed  herein.  

As an i l lustrat ion,  aga in  cons ider  the example  p resen ted  earlier unde r  
Two I n d e p e n d e n t  P ropor t ions  wi th  7r¢ = 0.05 and  7re = 0.15. The equa t ion  
ba sed  on the arcsin t r ans fo rmat ion  wi th  equal  sample  sizes is 

N = 2(Z~ + Z~) 2 
[A(cre) - A(cr~)] 2 (15) 

and  for c~ = 0.05 (one-s ided)  and  /~ = 0.10 we find N = 290. This is 
s o m e w h a t  less than  the N = 310 es t imated  f rom the app rox ima te  equa t ion  
(13) and  the  more  precise  formula  (12), which  yields  N = 306. In general  the 
angula r  t r ans fo rmat ion  p rocedure  yields N abou t  3 - 5 %  less than  that  f rom 
equa t ion  (12), wi th  ~ = 0.05 (one-s ided) ,  fl = 0.10. 

Paired Observat ions  

N o w  consider  the p r o b l e m  whe re  two g roups  of obse rva t ions  are l inked 
toge ther  in some  w a y  such as th rough  ma tch ing  or repea ted  measures  on 
the s a m e  ind iv idua l s  at t imes a and  b. This  is exactly ana logous  to the 
p r o b l e m  of the t test  for pa i red  obse rva t ions  except that  the ou tcome is n o w  
qual i ta t ive ra ther  than  quant i ta t ive .  In this case, the basic  data are expressed  
a s  

Time a 

Time b 
+ 

m++ [ m .  

m ÷ m _ 

mr, 

where  m+_, for example ,  is the n u m b e r  of pairs  wi th  (+) for observa t ion  a 
( t ime  a or the  a pa i r  m e m b e r )  and  ( - )  for  o b s e r v a t i o n  b. For the a 
obse rva t ions  rn~ is the total n u m b e r  (+) and  l ikewise  mb for the b observa-  
t ions.  The f requenc ies  (re's) are then  conver ted  to p ropor t ions  (p's) by  
d iv id ing  b y  the total n u m b e r  of pairs ,  N. 

In such p rob l ems ,  one wishes  to test  the null hypo thes i s  H0:/~0 = (Trb - 
7ra) = 0. Note ,  howeve r ,  that  Trb -- 7ra = 7r_+ -- 7r+_; thus the p r o b l e m  can 
then  be  expressed  solely in te rms of the d iscordant  p ropor t ions  7r_+ and  7r+_ 
whe re  H0 impl ies  that  7r_+_= 7r_+_ = Tr. The test statistic e m p l o y e d  is Z = 
~__+ - p+_)/S where  S 2 = 2p/N, p = 1/2(p_+ + p+_) is the sample  es t imate  of 
Tr and  whe re  u n d e r  H0, Z - N(0, 1). Note  that  Z 2 is equ iva len t  to the 
McNem ar  X 2 statistic usual ly  e m p l o y e d  (see u n d e r  Discuss ion  following).  

For s ample  size or p o w e r  de t e rmina t ion  the clinically re levant  difference 
/xl = 17r-+ - 7r+_] is specified.  The co r re spond ing  var iance  has been  s h o w n  
b y  Mie t t inen  [13] to be  o'21 = 2rr_+ 7r+_/~" whe re  ~ = V2(Tr_+ + 7r+_). Unde r  
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H0:/-~0 = (Tr_+ - It+_) = 0, w h i c h  i m p l i e s  o-02 = 2Ir. S u b s t i t u t i n g  i n t o  e q u a t i o n  
(5) y i e l d s  t h e  b a s i c  r e l a t i o n s h i p  

V ~ ] ~ _ +  - ~r+_ I =  Z ~ V ' ~  + Z~X/2~_+ ~r+_/~ (16) 

w h i c h  can  b e  s o l v e d  for  t he  to ta l  n u m b e r  of p a i r e d  o b s e r v a t i o n s  (N) or  
p o w e r  ( f rom Z~). 

For  e x a m p l e ,  c o n s i d e r  tha t  w e  w i s h  to  d e t e c t  a d i f f e r e n c e / ~ ,  = 0.15 w h e r e  
~+_ = 0.05, ( i m p l y i n g  ~-_+ = 0.20),  u s i n g  e q u a t i o n  (16) for  a = 0.05 (one-  
s i d e d ) , / 3  = 0.10 y i e l d s  N = 80. 

Two Independent Groups with Paired Observations 
A s  w i t h  t he  t t e s t ,  t h i s  can  b e  e x p a n d e d  to t h e  p r o b l e m  of t w o  i n d e p e n d e n t  
g r o u p s  of p a t i e n t s  w i t h  p a i r e d  o b s e r v a t i o n s  on  each  p a t i e n t .  3 U n d e r  th i s  
d e s i g n ,  r e p e a t e d  o b s e r v a t i o n s  ( +  or  - )  a r e  o b t a i n e d  at  t i m e s  a a n d  b o n  t w o  
i n d e p e n d e n t  g r o u p s  of s i z e s  ne = QeN a n d  nc = QcN. The nul l  h y p o t h e s i s  
of n o  t r e a t m e n t  b y  t i m e  i n t e r a c t i o n  H0:/~0 = 8e - 8c = 0 is  to b e  t e s t e d ,  
w h e r e  8e = ~eb - 7tea is  t h e  c h a n g e  o v e r  t i m e  in  t h e  t r e a t e d  g r o u p  a n d  6c = 
•rcb - Irca is  t h a t  for  con t ro l s .  

A s  s h o w n  u n d e r  P a i r e d  O b s e r v a t i o n s ,  t h e  p r o b l e m  can  b e  e x p r e s s e d  
so l e ly  in  t e r m s  of  t h e  d i s c o r d a n t  o b s e r v a t i o n s  w i t h i n  t h e  t w o - w a y  t ab le  for  
each  g r o u p ,  d e n o t e d  as  ~'e+-, ~re-+, rrc+_, a n d  ~'c-+, w h i c h  i n  t u r n  d e f i n e  t he  
d e g r e e  of i n t e r a c t i o n  /-~1 = 1Be - 6cl to b e  d e t e c t e d .  U n d e r  H1 the  s a m p l e  
s t a t i s t i c  D = de - dc = Pc-+ -- Pe+- -- Pc-+ + Pc+- is  n o r m a l l y  d i s t r i b u t e d  
w i th /~1  = IAI w h e r e  

A = ~e-+ -- ~e+-  - Ire_+ +I rc+_  (17) 

a n d  

o_2 = 4~re-+Tre+_ 41rc_+ Ire+_ (18) 

Q e(~-e-+ + 1re+-) + Qc(1rc-+ + ~'c+-) 

A su f f i c i en t  c o n d i t i o n  for  H0 to b e  t rue  is  t h e  a s s u m p t i o n  of h o m o g e n e i t y  
w h e r e i n  t he  t r e a t e d  a n d  con t ro l  g r o u p s  a r e  a s s u m e d  to b e  d r a w n  f r o m  the  
s_ame p o p u l a t i o n  w i t h  c o m m o n  p a r a m e t e r s  or+_ = Qerre+- + Q j r c + -  a n d  

~r_+ = Qelre_+ + Q j r c - +  y i e l d i n g  /~0 = 0. A l t e r n a t i v e l y ,  such  a s e v e r e  
a s s u m p t i o n  m a y  n o t  b e  r e q u i r e d  a n d  o n e  m i g h t  fit  a n o - i n t e r a c t i o n  m o d e l  
to  t h e  i n t e r a c t i o n  p a r a m e t e r s  to o b t a i n  t h e  se t  of n o - i n t e r a c t i o n  p a r a m e t e r s ,  

~-', as  7re+_ = rre+_ + T, Ire-+ = ~re-+ - T, ~rc+- = 7re+_ - T a n d  ~c-+' = Ire_+ 
+ T, w h e r e  T = A/4 a n d  A is  d e f i n e d  as  in  e q u a t i o n  (17). A l t e r n a t i v e l y ,  o n e  
m i g h t  e m p l o y  t h e  s a m e  p a r a m e t e r s  ~'c+-, rre+_ u n d e r  H0 a n d  H ,  a n d  t h e n  
c o m p l e t e  t h e  n o - i n t e r a c t i o n  m o d e l  w i t h  p a r a m e t e r s  ~-~+_ = 1re+_, 7r~_+ = 
7re_+ + 1/2A, Ir~+_ = Ire+_ and 7r'_+ = 7r~_+ - I/2A. In each case'D is normally 
distributed with/~0 = 0 and variance o-2 of the same form as equation (18) 
but with ~r' substituted for the ~. 

3Lachin et al. [1] also present extensions to analyses across independent  subgroups within 
two independent  primary groups. 
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The null hypothes i s  H0:A -- 0 is then tested using Z = (de - de)/3-o, usually 
with 3-0 defined from the s a m p l e p ' s  under  the assumpt ion  of homogenei ty.  

r r ! t In the latter case 77e+- = 77¢+- = rr÷_ and 77e + : 77e + : 77_+. 
Subst i tut ing into equat ion (5) yields the equat ion 

7 7 e +  - -  + 77c+ I = 

Z~ ~ Q  4rr;_+77'~+_ 
(77;-+ + 77;÷_) 

+ Z , x /  47r~. + 7 r e + _  

Qe (Tr~_+ + ~re+ ) 

4 ¢ ' "w e 4 . T T e + _  + 
Q(. (77[. + + 7re+ ) 

4 q T c  + 77c+-~ + 
Q¢(77e + + 77c+-) 

(19) 

with the ~-' defined under  the assumpt ion  of homogene i ty  or after fitting 
one of the no- interact ion models.  This can then be solved for total sample 
size N or power .  

For example, consider a clinical trial in which 100 patients,  50 in each 
group,  are to unde rgo  evaluat ion before and after t reatment and we desire 
the power  of the s tudy  to detect group differences. The parameters  of the 
problem may be specified as 77~.+ , 8~, (which yields 77e-+), rre+-, and A 
(which then yields 77e-*). Assume we are interested in detecting moderate  
differences such as 77~+_ = 0.03, 3,. = 0.05, 77e+- = 0.03, and/x l  = A = 0.15. 
Using ' and ' = rr~.+_~ = 77e+- %+_ rre, , fitting a no-interact ion model  and then 
us ing equa t ion  (19) with c~ = 0.05, (one-sided),  we find that Zs -- 0.734 and 
power  = 77% (fl = 0.23). Solving for sample size in equat ion (19) with fl = 
0.10 indicates that N = 151 yields 90% power  of detecting these same 
effects. 

D i s c u s s i o n  

Although the problems just given are presented in terms of the normal 
approximat ion  to the binomial ,  a two-tailed test us ing each of the statistics, 
Z, presented under  A Single Proport ion,  Two Independen t  Proport ions ,  and 
Paired Observat ions  yields the same p value as the one df chi-square test 
usually employed  in the same situation. For each of these Z and chi-square  
(X 2) tests, it is easily shown  that X 2 = Z 2 and thus that the p values for the 
two tests are the same. For example, the 1 df chi-square critical value at the 
0.05 level is X~.05 = 3.841, which equals (1.96) 2, where  Z0.02~ = 1.96 (the two- 
tailed critical value at the 0.05 level). Thus,  if one in tends  to use the 
inheren t ly  two-ta i led ch i -square  test, two-ta i led sample  size or power  
de terminat ion  should  be employed  (i.e., us ing Z~/2 rather than Z~). Other- 
wise,  sample size may  be severely underes t imated.  

When  a two-tai led test is to be conducted,  however ,  one mus t  carefully 
consider  each of the two possible alternatives. For example, in tests of a 
single propor t ion ,  H0:77 = 77o is tested against  an alternative, which for a 
two-s ided  test is specified a s  H 1 : ~ 1  = 3 = I'a-1 - 770[ ~ 0.  The two-s ided test 
thus implies two alternative values for 771:771u = 77o + 3 and 771e = 77o - 3. 
Obviously,  since the variances depend  on 7rl, the est imated sample size will 
be greater, and power  smaller, for the alternative (77~u or 77~e) closest to 0.50. 
fNote that ~-(1 - w) is maximized at 7r = 0.50]. In fact, the larger of the two 
resulting sample size estimates may be as much as 4.64 times the smaller 
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est imate .  Thus ,  if a two- ta i led  analysis  is to be  conducted ,  one should  
cons ider  the two impl i ed  a l ternat ives  (e.g., rri~ and  7r~e) and  use  whichever  
is closest to 0.50. 

An a l ternat ive  would  be  to employ  sample  size p rocedures  us ing  the 
p o w e r  funct ion of the ch i -square  test itself, which  is inheren t ly  two-tai led.  
Lachin [14] d iscusses  this p rocedu re  for the general  r x c cont ingency  table 
and  s h o w e d  that  the use of the l imit ing chi -square  p o w e r  approach  and  the 
two-ta i led  a sympto t i c  normal  equa t ion  (11) were  in close ag reemen t  for the 
2 x 2 con t ingency  table. 

SURVIVAL ANALYSIS 

In m a n y  clinical trials, s imple  p ropor t ions  as descr ibed  in the last section 
will be  used  to evaluate  the ou tcome,  such as to evaluate  the heal ing or 
i m p r o v e m e n t  rate in an acute condi t ion wi th  a shor t - t e rm therapy. In m a n y  
other  cases, howeve r ,  the impor t an t  feature  is not only the ou tcome event ,  
such as death ,  bu t  the t ime  to the terminal  event ,  the surv ival  time. In these 
trials, the data is ana lyzed  us ing  l ife-table me thods  that  consider  the t ime 
to the terminal  event  for each pa t ien t  and  that  p rov ide  a more  power fu l  
e s t ima te  of the,  say, T year  surv iva l  than  is o b t a i n e d  f rom the crude  
p ropo r t i on  of surv ivors  after T years.  Some  basic  references  on this proce-  
dure  are [15-17]. 

The basic  l i fe- table m e t h o d  of analysis  is d i s t r ibu t ion  free in that  no 
unde r ly ing  a s s u m p t i o n s  abou t  the d is t r ibu t ion  of t ime to event  need  be 
specified. For s ample  size evaluat ion,  howeve r ,  some such a s s u m p t i o n  m u s t  
be  made .  The mos t  c o m m o n  a s s u m p t i o n  is that  t ime to survival  is exponen-  
tially d i s t r ibu ted  wi th  haza rd  rate h, where  at any  t ime t the p ropor t ion  of 
surv ivors ,  P~(t), is g iven  as Pdt)  = e -~t. Unde r  this model  log [Ps(t)] is 
l inear ly decreas ing  in t ime wi th  slope ~. In a cohort  of N pat ients ,  all 
fo l lowed to the terminal  event  wi th  m e a n  survival  t ime M, the haza rd  rate 
is es t imated  as L = M -~ and  asymptot ica l ly  L ~ N(h ,  h2/N), [18]. 

Two Independent Groups 

Cons ide r  that  there are two i n d e p e n d e n t  g roups  of sizes ne and  nc all 
fo l lowed to the terminal  event  where  t ime t is measu red  f rom the t ime of 
en t ry  in to  the study. The null hypo thes i s  of equal i ty  of survival  is equ iva len t  
u n d e r  exponent ia l  surv iva l  to H0: (he - he) = 0, which  can be  tested us ing  
the statistic Z = (Le - Le)/S where  Le and  Le are the es t imated  haza rd  rates,  
Le = M ; ' ,  Lc = M ~  1, S 2 = (n ;  ~ + n ~ ) L  2, L -- (QeLe + QcLc),  and  where  
u n d e r  H0, Z - N(0, 1). 

For the de t e rmina t ion  of sample  size and  p o w e r  one  specifies the min ima l  
re levant  difference/~1 = [he - Xd, which  yields  o-~ = ()~e 2 Q~-I+ k~Q~-I). U n d e r  
the null hypothes i s /~0  = 0 and  o-02 = ~2(Q~-1 + Q~-I) where  h = Qe)~e + Qehe. 
Subs t i tu t ing  into equa t ion  (5) yields  

x//~lhe - he I = Z~X/x2 (Qe I + Q~I) + z a x / ) ~ Q ; '  + h ~ q ~  ~ (20) 

which  can then  be  solved for N or Z~. 
This  equa t ion  was  also p re sen t ed  b y  Pas te rnack  and  Gilber t  [19] and  was 



106 John M. Lachin 

shown  by  George and  Desu [20] to be slightly conservat ive in compar ison 
to the exact d is t r ibut ion  of the ratio Le/L¢, which has an F dis tr ibut ion.  
George and Desu also present  the following approximat ion  

x,/Ni~/2t~n(kdhe)] = Z ,  + Z~ (21) 

which they show to be accurate to wi th in  two sample units  of the exact 
solution. 

Another  approximat ion  can be obta ined  directly from equa t ion  (20) by  
not ing  that for equal  sample sizes 4h" is always less than or equal to 
2(he 2 + 2~c2). This then  yields 

~/Xl~-e - 2,~l/(~ ÷ 2~) = Z~ ÷ Z~ (22) 

w h e n  us ing  equal  sample  sizes. This approx imat ion  will yield values 
be tween  those from equa t ion  (20) and the approximat ion  (21) of George and 
Desu and can be  shown  to be  wi th in  Z~ less than that ob ta ined  from 
equa t ion  (20). 

Two Independent Groups with Censoring 
The formula t ion  just p resen ted  will rarely be applicable because  it assumes 
that all N pat ients  will be fol lowed to the terminal event  no matter  how 
much  t ime is requ i red  for the last pa t ient  to reach that event.  This is rarely 
practicable. A more  realistic approach is to allow for the trial to be te rminated  
at t ime T. Assume that the pat ients  enter  the trial at a un i form rate over the 
interval 0 to T and that exponent ia l  survival applies,  as earlier. If we denote  

d?()O = )~3T/(hT - 1 + e -v/) (23) 

t h e n  it  can  be  s h o w n  thato-02= (h()l)(Qel + Q;~) a n d  o-12= ~()le)Qe' + 
q)(2~c)Q~ -1 where  h = Qe2~ + Q¢)~c [18]. Subs t i tu t ing /z ,  = [ke -- )%[, /Z0 = 0, 
¢02 , and o-12 into equa t ion  (5) yields 

x lxe - xc I = Z~X/q)(X)(Qe ~ + Q;1) + z~x/q~(he)Qg-~ + ~B(;%)QZ-' (24) 

w i th  the 6(2,) as defined in equation (23). This can then be solved for sample 
size N or power  Z~. 

These  express ions  can be s implif ied,  however ,  since empir ical ly  for 
Qe = Qe, o-21> o'~, and  as employed  by  Gross and Clark [18, p. 264] we can 
use the s imple equa t ion  

x/NIKe - ~.c[ = (Z~ + Z~)x/(h()~e)Qe ~ + 6(Xc)Q; 1 (25) 

Again this approximat ion  is h ighly  accurate. 
In the event  that all pat ients  enter  the trial at the same poin t ,  or if each 

pat ient  enters the trial at r andom but  each is only fol lowed up to T years 
after entry,  the resulting equat ions  are identical  except that (h(h) in equat ion 
(23) becomes s imply h2/(1 - e-at). 

At' this po in t  it should  be no ted  that the sample size ob ta ined  with a 
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s tudy  of T years dura t ion  is that requi red  to yield the same n u m b e r  of 
deaths  (events) as ob ta ined  from equat ion  (21), al lowing for the fact that not  
all pat ients  will have  d ied  when  the s tudy  is terminated.  This is also true of 
the fol lowing procedure .  

Two Independent Groups with Limited Recruitment and Censoring 
In the formula t ion  just presented ,  note  that pat ients  are eligible to enter  the 
trial up to the trial end  date,  t ime T. Usually, however ,  it will be  desired to 
recruit  pat ients  for s tudy  over an interval 0 to To and then to follow all 
recrui ted pat ients  to the t ime of the terminal  event,  or to t ime T where  T > 
To. Based on the deve lopments  in [18, pp.  66-67], it can readily be shown 
that the variances o-02 and 0-2 are as in the previous  section bu t  with q)()0 
n o w  defined as 

e-~ (7. - T,,) _ e - ~r ] - ,  (26) 
cb*(h) = )~2 1 -  hTo 

I 

The desi red sample size or power  is ob ta ined  on subs t i tu t ing  6*(k) for ~b() 0 
in equa t ion  (24), or in equa t ion  (25) to yield an accurate approximat ion ,  and 
solving for N or Z~. 

For example,  consider  that a clinical trial is to be conducted  for a disease 
wi th  modera te  levels of mortal i ty with hazard  rate ~ = 0.30, y ie ld ing 50% 
survivors  after 2.3 years.  Suppose  that with t reatment  we are interested in 
a reduct ion in hazard  to ~ = 0.2, i.e.,  an increase in survival to 64% at 2.3 
years. With equal-s ized groups ,  a = 0.05 (one-sided) and fl = 0.10, equa t ion  
(20) yields N = 218 deaths  are requi red ,  i .e. ,  218 pat ients  all fol lowed to 
t ime of death.  The approximat ion  (22) yields N = 216 and the equa t ion  (21) 
of George and Desu yields N = 210. If the s tudy was to be te rminated  after 
5 years,  then us ing  equa t ion  (24) with equat ion  (23) yields N = 504 patients;  
the approximat ion  yields N = 508. Finally, assume that recru i tment  was to 
be te rmina ted  after the first 3 years of a 5-year  study,  then us ing equat ion  
(24) with equa t ion  (26) yields N = 378. 

Note  that unde r  all these plans the sample size requ i rements  are based 
on the need  to accrue approximate ly  210 deaths  dur ing  the study. Also note  
that if a fixed n u m b e r  of pat ients  is to be s tudied,  it is bet ter  for those 
pat ients  to be recrui ted quickly and fol lowed for a longer  per iod  of t ime 
than to extend the per iod  of s tudy  and reduce the rate at which the pat ients  
enter  the study. This example shows that 504 pat ients  would be needed  for 
a 5-year  s tudy  where  the pat ients  can enter  the s tudy  evenly  dur ing  the full 
5-year  per iod ,  whereas  378 pat ients  would  be needed  if recrui tment  was 
compressed  into a 3-year  per iod  with total s tudy dura t ion  again 5 years. 
The reason for this qui te  s imply is related to the total pa t ien t  months  of 
exper ience  of the cohort ,  i .e.,  the elapsed t ime from the t ime of randomi-  
za t ion  to t ime T s u m m e d  over  all pa t ien t s .  For a 5 -y ea r  s t u d y  wi th  
recru i tment  compressed  into the initial 3 years,  the average pa t ien t  months  
of exposure  would  be 3.5 years,  whereas  for a 5-year  s tudy  with recru i tment  
spanning  the total 5 years,  the average exposure  to t rea tment  would be 2.5 
years. 
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C O R R E L A T I O N S  

In obse rva t iona l  s tud ies  tha t  i nvo lve  cor re la t ions  as the p r inc ipa l  f o r m  of 
ana lys i s ,  t wo  types  of h y p o t h e s e s  are usua l ly  tested:  (1) w h e t h e r  a t rue  
cor re la t ion  ac tual ly  exists u s i n g  H0: p = 0 ve r sus  H~: p = pl :~ 0; a n d  (2) 
w h e t h e r  t wo  cor re la t ions  are s ign i f ican t ly  d i f fe ren t  u s i n g  H0: (pc - Pc) = 0 
ve r sus  H~: /x~ = (Po - Pc) :~ 0. T he  s imples t  a p p r o a c h  to such  p r o b l e m s  is to 
e m p l o y  F i she r ' s  a rc t anh  t r a n s f o r m a t i o n  [5]: 

C(r)  = 1/2logo (1_+ r) 
(1 r) 

G i v e n  a s a m p l e  corre la t ion  r b a s e d  on  N o b s e r v a t i o n s  tha t  is d i s t r i bu t ed  
a b o u t  an  ac tua l  co r r e l a t ion  v a l u e  (pa ramete r )  p,  t h e n  C(r )  is n o r m a l l y  
d i s t r i b u t e d  w i t h  m e a n  C ( p )  a n d  va r i ance  o -2 = 1 / ( N  - 3). The  t r a n s f o r m a t i o n  
of r to C (and  vice  versa)  is w i d e l y  tabu la ted .  (No te  tha t  this  is usua l ly  
t e r m e d  F i she r ' s  Z t r a n s f o r m a t i o n ,  b u t  w e  he re  use  C to avo id  conflict  in  
no ta t ion . )  

A S i n g l e  C o r r e l a t i o n  

In de tec t ing  a re levan t  s imp le  cor re la t ion  of deg ree  Hi:  /~1 = Pl, one  tests the  
nul l  h y p o t h e s i s  H0: p = 0 u s i n g  the  test  s tat is t ic  Z = C(r)~ - 3 w h e r e  Z 

N(0, 1). S u b s t i t u t i n g  in to  e q u a t i o n  (5) y ie lds  

- 3C(pl) = Z~ + Z~ (27) 

f r o m  w h i c h  the  r e q u i r e d  s amp le  s ize  or  p o w e r  m a y  be  ob ta ined .  O b v i o u s l y ,  
to  de tec t  a t rue  cor re la t ion  p~ g rea te r  t h a n  0.50 [C(p~) = 0.549], a small  N 
w o u l d  suffice. N o t e  tha t  Ho: p = 0 is e q u i v a l e n t  to a null  h y p o t h e s i s  tha t  the  
r eg re s s ion  coeff ic ient  is also zero .  

T w o  I n d e p e n d e n t  C o r r e l a t i o n s  

In de tec t ing  a re levan t  d i f fe rence  in  corre la t ions  Hi :  /~1 = IC(po) - C(pc)l =~ 
0 o b t a i n e d  f r o m  two  i n d e p e n d e n t  s a m p l e s ,  the  null  h y p o t h e s i s  Ho: /z0 = 0 is 
t es ted  u s i n g  the  stat ist ic Z = C(ro) - C(ro) /~o  w h e r e  ~ = N -1 (Qe I + Q~-I), 
no - 3 = Q o N ,  n¢ - 3 = Q c N ,  a n d  w h e r e  u n d e r  H0, Z - N(0, 1). The  
corre la t ions  ro a n d  rc are  o b t a i n e d  f r o m  t w o  samples  of s izes no a n d  no such  
as r e = re(uv ) a n d  r¢ = rc{uv~ for  var iab les  u a n d  v in  g r o u p s  e a n d  c. 

Subs t i t u t i ng  /xo = 0, /z, = IC(pe) - C(Po)I, and  E~ = ~o z in to  e q u a t i o n  (5) 
y ie lds  

X/N-IC(po) - C(pc) l 
= Z~ + Z~ (28) 

x / Q ; '  + Q~-' 

w h i c h  can t h e n  be  so lved  for  total s amp le  s ize  (N) or  p o w e r  (Z~). N o t e  tha t  
N f r o m  e q u a t i o n  (28) will  actual ly  be  six un i t s  less t h a n  tha t  actual ly  n e e d e d  
s ince  n e + n e - 6 = N.  



S a m p l e  Size D e t e r m i n a t i o n  

T a b l e  I T o t a l  S a m p l e  S i z e  (N) f r o m  E q u a t i o n  (29) a a s  a F u n c t i o n  of  K 
( W h e r e / z l  = Kor) f o r  V a r i o u s  a ( O n e - s i d e d )  a n d  fib 
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a = 0.05 a = 0.05 a = 0.025 a = 0.025 a = 0.01 
K fl = 0.20 fl = 0.10 fl = 0.10 fl = 0.05 fl = 0.05 

0.01 61,852 85,674 105,106 129,962 157,690 
0.025 9,898 13,708 16,818 20,794 25,232 
0.05 2,476 3,428 4,206 5,200 6,308 
0.075 1,100 1,524 1,870 2,312 2,804 
0.10 620 858 1,052 1,300 1,578 
0.125 396 550 674 832 1,010 
0.15 276 382 468 578 702 
0.175 202 280 344 426 516 
0.20 156 216 264 326 396 
0.25 100 138 170 208 254 
0.3 70 96 118 146 176 
0.4 40 54 66 82 100 
0.5 26 36 44 52 64 
0.6 18 24 30 38 44 
0.7 14 18 22 28 34 
0.8 10 14 18 22 26 
1.0 8 10 12 14 16 

aRounded to the next highest  even number  

hFor a two-sided determination at level a, the table should be used with the value a/2. 

T a b l e  2 P o w e r  (1 - ]3) f r o m  E q u a t i o n  (30) a s  a F u n c t i o n  of  K a n d  T o t a l  
S a m p l e  S i z e  N ( w h e r e / z l  = Ko-) w i t h  a = 0 .05  ( o n e - s i d e d )  

K 

N 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.75 1.00 

10 0.0685 0.0920 0.1209 0.1556 0.1964 0.2431 0.3519 0.4745 0.7663 0.9354 
20 0.0776 0.1155 0.1650 0.2265 0.2991 0.3808 0.5572 0.7228 0.9563 0.9977 
30 0.0852 0.1363 0.2051 0.2913 0.3914 0.4993 0.7074 0.8629 0.9931 0.9999 
40 0.0920 0.1556 0.2431 0.3519 0.4745 0.5996 0.8119 0.9354 0.9990 0.9999 
50 0.0983 0.1741 0.2795 0.4087 0.5489 0.6831 0.8817 0.9707 0.9999 0.9999 
60 0.1042 0.1920 0.3145 0.4618 0.6147 0.7514 0.9269 0.9871 0.9999 0.9999 
70 0.1100 0.2094 0.3483 0.5113 0.6724 0.8065 0.9556 0.9944 0.9999 0.9999 
80 0.1155 0.2265 0.3808 0.5572 0.7228 0.8504 0.9734 0.9977 0.9999 0.9999 
90 0.1209 0.2431 0.4122 0.5996 0.7663 0.8851 0.9842 0.9990 0.9999 0.9999 

100 0.1261 0.2595 0.4424 0.6387 0.8037 0.9123 0.9907 0.9996 0.9999 0.9999 
200 0.1741 0.4087 0.6831 0.8817 0.9707 0.9953 0.9999 0.9999 0.9999 0.9999 
300 0.2180 0.5347 0.8297 0.9656 0.9964 0.9998 0.9999 0.9999 0.9999 0.9999 
400 0.2595 0.6387 0.9123 0.9907 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999 
500 0.2991 0.7228 0.9563 0.9977 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
750 0.3914 0.8629 0.9931 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

1000 0.4745 0.9354 0.9990 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
2500 0.8037 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
5000 0.9707 0.9999' 0,9999 0.9999; 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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Two Related Correlations 

In detect ing a relevant difference be tween  two correlations ra and rb obtained 
from a single sample of size N, the covariance Cov[C(re), C(rb)] must  be 
considered.  This obvious ly  applies w h e n  the two correlations involve a 
c o m m o n  variable, e.g., re = ru,, and rb -- ruw for variables u, v, and  w. It also 
applies when  the two correlations do not have a variable in common,  e.g., 
re = ruv and  r6 = r~x for var iables  u, v, w, and  x, due  to the o ther  
in tercorre la t ions  Puw, P .... p ~ ,  and  Pvx. Due to the complexi ty  of the 
covariance expressions as g iven in [21], the test statistics and the solutions 
for sample size and power  will not  be presented,  a l though the latter are also 
obta ined directly f rom the basic equat ion (1). 

FURTHER SIMPLIFICATION AND TABLES 

In m a n y  of the si tuations just described,  the equat ions  for N and Z~ resulting 
from equat ions  (3) and (4) can be simplified if the difference 0 = I/~1 - /~01 
is presented as a funct ion of the s tandard deviat ion of the basic observations.  
If o'0 = o"1 = o-, and 0 is specified as 0 = Kcr, then the equat ions  for sample 
size and power  s imply reduce to 

N = [(Z~ + Z~)/K] 2 (29) 

Z B = K V ~  - Z~ (30) 

where  K -- 0/o-. Table 1 presents total N from equat ion (29) as a funct ion of 
K for various c~ and fl levels. Table 2 presents power  obta ined from Z~ us ing 
equat ion  (30) as a funct ion of K and  total N for a = 0.05 (one-sided). If/~0 
= 0 then 0 = [/~11 and equat ions  (29) and (30) s imply give the sample size 
(or power) where  the minimal  relevant difference is expressed as a fraction 
(K) of the s tandard devia t ion of the observations.  

These simplified equat ions  are applicable to mos t  of the procedures  
presented in this paper .  Table 3 presents the expressions for K required for 
these var ious  statistical tests. This table can be used with Tables 1 and 2 or 
with equat ions (29) and (30) directly. In each case, the cor responding  explicit 
equat ion in the preceding text is cited. 
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