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1. INTRODUCTION 

Knowing the types and amounts of fuels at a 
site is an important prerequisite to evaluating fire 
risk, predicting fire behavior, and assessing 
potential fire effects. When these assessments are 
expanded to larger extents, the spatial 
configuration of the landscape fuel mosaic must 
also be considered (Keane et al. 2000: Keane et 
al. 1998). Spatial patterns of fuels, topography, 
and wind all interact to influence fire spread and 
intensity. Fuels are of particular interest from a 
management perspective because they can be 
modified through mechanical treatments or 
prescribed burning. Accurate maps of existing fuel 
patterns can help managers develop improved 
assessments of fire risk and target fuel reduction 
efforts more efficiently. In order for fuel maps to be 
useful to land managers they must accurately 
represent the spatial pattern of fuels across large, 
heterogeneous landscapes, while simultaneously 
and consistently mapping multiple fuel and 
vegetation variables. 

Aerial photographs and satellite imagery have 
been used extensively to map forest land cover. 
However, the limited number of vegetation types 
mapped in classified images may not be sufficient 
to capture the continuous spatial variability of 
multiple forest attributes. An alternative to  
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traditional image classification methods is the 
predictive vegetation mapping approach (Franklin 
1995). In this approach, statistical models are 
used to predict vegetation characteristics 
measured in the field using remotely sensed 
imagery and GIS layers describing climate, 
topography, and other biophysical variables. 
These mixed models provide a more detailed 
characterization of forest vegetation patterns than 
can be obtained independently from either 
remotely sensed imagery or biophysical data. 
Other types of spatial variables may also indirectly 
contribute to predicting vegetation and fuels. For 
example, ownership may be a predictive variable if 
different landowners implement different forest 
management regimes that produce distinctive fuel 
patterns. 

Emerging imputation-based statistical 
methods can generate simultaneous spatial 
predictions of multiple vegetation attributes (Moeur 
and Stage 1995: Ohmann and Gregory 2002: 
Tuominen et al. 2003). In these approaches, a 
statistical model is used to choose a 
representative field plot from a set of sampled 
locations to characterize each unsampled area in 
the landscape. Multiple vegetation attributes from 
the selected plot are then assigned to each 
unsampled location. The advantages of this 
method are that it maintains the true correlation 
structure among the predicted variables, and also 
retains the full range of variability for each of the 
predicted variables (Moeur and Stage 1995).  

The Gradient Nearest Neighbor (GNN) 
method, which combines a multivariate imputation 



model with the predictive vegetation mapping 
strategy described previously, has been 
successfully applied in the Oregon Coast Range to 
map multiple forest structure variables measured 
on regional forest inventory plots (Ohmann and 
Gregory 2002). The main objective of this 
research was to explore the feasibility of mapping 
forest fuels in the Coast Range using the GNN 
approach. We used GNN to generate preliminary 
spatial models of several forest vegetation 
attributes related to fire risk, fire spread, and fire 
effects. An accuracy assessment was carried out 
to quantify the uncertainty of these spatial 
predictions. Patterns of forest structure and fuels 
were mapped to explore the spatial variability of 
the predicted vegetation attributes. 

2. METHODS 

The Oregon Coastal Province encompasses 3 
million ha in western Oregon (Figure 1). 
Physiography is characterized by highly dissected 
terrain with steep slopes and high stream 
densities. Climate is generally wet and mild, with 
most precipitation falling between October and 
March. Major conifer species include Douglas-fir 
(Pseudotsuga menziesii), western hemlock (Tsuga 
heterophylla), and Sitka spruce (Picea sitchensis). 
Red alder (Alnus rubra) and bigleaf maple (Acer 
macrophyllum) often dominate on moist sites and 
in riparian areas. Ownership patterns reflect a 
legacy of large catastrophic wildfires, with many 
federal and state forests located on the sites of 
historical burns. In other areas, ownerships are 
distributed in a checkerboard pattern that is a relic 
of historical railroad land grants.  

Vegetation data was collected between 1994 
and 1997, and included 1300 field plots from the 
Natural Resources Inventory, encompassing 
Bureau of Land Management lands; the Current 
Vegetation Survey, encompassing the Siskiyou 
and Siuslaw National Forests; the Forest Inventory 
and Analysis Program, encompassing nonfederal 
lands; and an old growth survey that was carried 
out on federal lands. These data included dbh, 
height, and crown ratio measurements for all live 
trees; diameter, height/length, and decay class 
measurements for snags and down wood; and 
estimates of understory vegetation cover. Live tree 
structure was summarized as total basal area by 
species- and size-class. Dead tree structure was 
summarized as the total standing dead and down 
dead biomass. These structural indices were used 
as the vegetation response variables to develop 
the GNN model. 

Spatial predictor variables from a variety of 
sources were incorporated into an integrated 
raster GIS database with a 30 m spatial grain. 
Satellite imagery was obtained from Landsat TM 
scenes collected in 1996, and included raw band 
values and tasseled cap transformations. 
Locations of recent timber harvests derived from 
multi-date analysis of satellite imagery (Cohen et 
al. 2002) were also incorporated into the 
database. Spatial climate data produced by the 
DayMet model were used to compute mean 
conditions and seasonal variability in climate 
(Thornton et al. 1997). Digital elevation models 
were used to compute elevation, slope, aspect, 
and solar radiation. A land ownership map was 
used to identify privately- versus publicly-owned 
lands.  

The following steps were used to develop a 
predictive map of forest structure using the GNN 
method (Ohmann and Gregory 2002):  

1. Direct gradient analysis was conducted 
using stepwise canonical correspondence analysis 
(CCA) (ter Braak and Prentice 1988) to develop a 
multivariate model that quantified the relationship 
between forest structure indices measured on the 
field plots and the mapped explanatory variables. 
Based on this CCA model, each plot received a 
set of axis scores that identified its location in an 
abstract, multidimensional spectral and 
environmental space. 

2. For each pixel, scores for statistically 
significant CCA axes were predicted by applying 
coefficients from the model developed in step (1) 
to the mapped values for the explanatory 
variables. Thus, each pixel was projected into the 
same multidimensional space as the ground plots. 

3. For each mapped pixel, the single plot that 
was nearest in eight-dimensional gradient space 
was identified. Distances were Euclidean and axis 
scores were weighted by their eigenvalues. Note 
that this distance was an abstract gradient 
distance, not the geographic distance between the 
plots. This step effectively matches each pixel with 
the ground plot that has the most similar suite of 
spectral and environmental characteristics. The 
specific spectral and environmental variables used 
in this analysis have already been selected and 
weighted in step 1 for maximum correlation with 
forest structure. 

4. The ground attributes of the nearest-
neighbor plot were imputed to each mapped pixel. 
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Figure 1: Land ownership maps of a) the Oregon Coast Range, and b) the focal area in the Central 
Coast Range. Hatched areas delineate the approximate boundaries of several large historical wildfires.
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Each pixel is thus linked to all of the measured 
field data from the associated ground plot 

After the GNN model was used to assign a 
representative inventory plot to each pixel in the 
landscape, fuel variables were computed from the 
imputed field data. Four of the forest canopy 
attributes required for input into the FARSITE 
model (Finney 1998) were computed for each 
pixel: canopy bulk density, height to crown base, 
stand height and canopy cover. Canopy bulk 
density was computed using methods similar to 
those of Cruz et al. (2003), based on published 
crown weight equations for Pacific Northwest tree 
species (Brown 1978: Snell and Brown 1980: Snell 
and Anholt 1981: Snell and Little 1983). Down 
dead fuel and snag fuel loadings in the > 1000 
hour (> 20 cm diameter) time-lag class were also 
calculated. Although these larger fuels do not 
directly influence the behavior and intensity of the 
active fire front, they may contribute to fire effects 
and emissions through residual smoldering 
combustion (Bertschi et al. 2003). 

Cross validation was carried out by comparing 
observed values for each plot with the values from 
its second-nearest neighbor in the ordination 
space. This approach has been shown to generate 
similar results to more traditional cross-validation 
approaches where individual plots or subsets of 
plots are eliminated from the dataset and then 
predicted using the model (Ohmann and Gregory 
2002) Spatial patterns of mapped fuels variables 
were graphically displayed for a 150 km2 focal 
area located in the central Coast Range just north 
of the Siuslaw River (Figure 1). 

3. Results 

The underlying CCA model explained 34.7% 
of the total variability in forest structure based on 
satellite imagery, biophysical variables, and land 
ownership (public versus private). Variables 
derived from Landsat TM imagery accounted for 
the majority (20.6%) of the explained variation, 
predicting spatial variability in live tree size and 
density. Land ownership was also related to tree 
size and density. Climate and topography were 
predominantly associated with spatial variability in 
tree species composition. Recent timber harvest 
activity was related to the biomass of snags and 
down wood. 

Accuracy of the predicted canopy variables 
was highest for stand height, followed by canopy 
cover, height to base of canopy, > 1000 hour snag 

fuels, canopy bulk density, and > 1000 hour down 
dead fuels (Figure 2). The prediction errors for 
stand height and height to base of canopy were 
relatively consistent across the range of values 
examined. Plots with crown bulk density greater 
than 0.3 kg/m3 were under predicted, whereas 
several plots with crown bulk density between 0.1 
and 0.2 kg/m3 were over predicted. Errors in the 
prediction of crown cover were much higher for 
plots with less than 50% than for plots with higher 
crown cover. Errors in the predictions of large 
down wood and snag fuel loads were high across 
all levels of these variables. 

When the predictive maps were viewed at a 
landscape scale within the 150 km2 focal area, two 
different types of spatial variability could be 
discerned (Figure 3). Height to base of canopy, 
stand height, and large snag fuel loads exhibited 
coarse-scale spatial patterns that reflected the 
boundaries of major land ownership types, and the 
distribution of past forest management activities 
within these ownerships. In contrast, canopy bulk 
density, canopy cover, and large down wood fuel 
loads exhibited finer-grained spatial patterns in 
which the land ownership mosaic was much less 
apparent. 

4. Discussion 

This preliminary assessment demonstrated 
the feasibility of using the GNN method to develop 
predictive maps of forest fuels based on satellite 
imagery, biophysical data, and ownership data. 
The distinctive patterns generated for the different 
fuel variables emphasize the importance of 
making continuous, independent predictions of 
multiple vegetation attributes, rather than linking 
all the variables to a single classification scheme. 

The accuracy of the predictions varied 
considerably among the variables tested. It is 
important to note that the preliminary CCA model 
used to generate these maps was a general model 
based on live tree basal area and dead tree 
biomass. Predictions of canopy fuel loads are 
therefore based on second-order relationships 
between the modeled variables and canopy fuel 
variables that were derived post-hoc from the 
imputed plot attributes. We expect that prediction 
accuracy can be improved by incorporating 
canopy variables as response variables in the 
underlying multivariate model, thereby optimizing 
the model for predictions of canopy fuels and 
canopy structure. Improving predictions of dead 
fuel loads will be more difficult. Down logs and 
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Figure 2: Cross-validation of  forest structure and fuel variables mapped using the GNN 
method. Observed values measured on the field plots(x-axis) are plotted against predicted 
values generated through a second nearest-neighbor analysis of the GNN model (y-axis).
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Figure 3: Spatial patterns of fuels and forest structure within a 150 km2 landscape located in the
               Oregon Coast Range. Predictive vegetation maps were generated using the Gradient
               Nearest Neighbor model. White patches represent non-forested areas.
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Figure 3 (Continued)
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snags cannot be directly measured using satellite 
imagery, and their regional patterns may be 
primarily related to disturbance history rather than 
environmental setting. 

Although prediction accuracies can almost 
certainly be improved, some level of uncertainty 
will undoubtedly remain in the fuel maps 
generated using the GNN method. The 
implications of this uncertainty for the utilization of 
fuel maps in management and planning are 
unclear. Although fuel maps embody considerable 
uncertainty at the individual pixel level, they may 
still generate reliable aggregate predictions for 
stands, watersheds, or other larger landscape 
units. Even though error is unavoidable, predictive 
spatial models provide critical information about 
broad scale fuel patterns that cannot be obtained 
from any other data source. Future accuracy 
assessments will need to focus on evaluating map 
error in a spatially explicit context, and 
understanding how this error propagates through 
models of fire risk and fire behavior. 

Ongoing work on the application of the GNN 
method to predictive fuels mapping includes 
refinement of the multivariate statistical model to 
improve prediction accuracy, and exploration of 
methods for quantifying spatial uncertainty and 
error propagation. The GNN mapping approach is 
also being applied in eastern Washington and in 
the Sierra Nevada in California to assess the 
potential for predictive fuel mapping across a 
variety of different ecoregions. 
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