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Abstract

We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic
information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and
deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables
were most important for explaining both total and deciduous shrub cover. Four relationships were noted: (1) shrub cover was
negatively associated withTsuga heterophylla basal area and density of shade-tolerant trees; (2) shrub cover was negatively
associated with variables that characteristically peak during stem exclusion and mid-succession; (3) shrub cover was positively
associated with variables that characterize later successional stages; and (4) higher total and especially deciduous shrub cover
were positively associated with hardwood stands. Environmental variables were more important for explaining deciduous
shrub cover compared to total shrub cover, but they have an indirect effect on total shrub cover by influencing tree composition.
However, because of land ownership patterns, it was difficult to decouple environmental from disturbance factors associated
with management strategies across multiple ownerships.

Tree models performed similarly (PRD= 0.17–0.27) or better compared to MLR models (PRD= 0.17–0.23) although
they contained more (2) predictor variables. Our results indicate that response variable transformation can greatly improve
regression tree model performance. While interpretation of MLR and tree models were somewhat similar, the tree models
allowed a more explicit understanding of relationships and provided thresholds for anticipating shifts in shrub cover. Such
thresholds are useful to forest managers who are monitoring and evaluating critical amounts of shrub cover necessary for
different ecosystem components such as bird habitat. Lack of strong predictive power in both types of models may be because
many common shrubs can persist and maintain consistent cover under a variety of stand and environmental conditions or there
may be a lag time between disturbance events and shrub response. The stochastic nature of disturbance and their interactions
with site conditions also makes prediction at this scale in this highly managed landscape inherently problematic. Yet, our
models provide both a predictive and conceptual tool for understanding shrub cover patterns across the region.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the Pacific Northwest of the US (Oregon and
Washington), development of forest policies to sustain
biological diversity and ecological function while pro-
viding for other social and economic values is a major
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challenge for decision makers and managers. Con-
flict over the appropriate balance between ecological,
economic and social goals led to major controversies
regarding forest management in the 1980s and 1990s
and development of new forest polices in the region.
In Oregon’s Coast Range, separate new policies for
federal, state, and private lands have been initiated in
the last few years (Spies et al., 2002b). These poli-
cies are based on current scientific information, but
it is unclear how effective they will be in meeting
ecological, economic and social goals. Monitoring,
modeling, and evaluation of ecological indicators at
the landscape scale can provide important feedback
on the effectiveness and outcomes of land manage-
ment policies and programs and focus attention on
the status and trends of biosocial systems.

Shrub cover is a good candidate for an ecological
indicator because shrubs form a distinct structural
layer or layers in the subcanopy of most Pacific North-
west forests, cover data are relatively easy to obtain
in the field and are widely available from forest in-
ventory data and research plots, and shrub cover can
be used as an indicator of forest health and is directly
linked to ecological function. Measures of understory
cover are included in a suite of forest health indica-
tors that are monitored nationally in the US (Stolte
et al., 2002). The meaningful ecological significance
of some general measures of vegetation structure
is not always clear (Cole, 2002), but shrub cover
has been directly and significantly linked to habitat
quality and a number of interconnected, complex
ecological processes (Carey, 1995; Hagar et al., 1996;
Muir et al., 2002). Shrubs provide shelter, substrate,
and food for forest organisms and provide important
organic matter inputs to soils, play a major role in
nutrient cycling, contribute substantially to composi-
tional and structural diversity, help protect watersheds
from erosion and enhance the aesthetics of forest
ecosystems (Alaback and Herman, 1988; Halpern
and Spies, 1995; Muir et al., 2002). For example, the
cover and distribution of shrubs influence the vari-
ety and abundance of mycorrhizal fungi, which are
critical food for small mammals that are important
prey for avian and terrestrial predators (Carey, 1995;
Carey et al., 1999). Shrub stems, particularly decidu-
ous shrubs, provide substrates for many mat-forming
bryophytes and macrolichens, which serve as nitrogen
fixers, function as hydrological buffers, and provide

food for flying squirrels, deer, elk and arthropods
(Rosso, 2000; Peck and McCune, 1998). Arthro-
pods have important functions in forest ecosystems
as they serve as defoliators, decomposers, and prey
or hosts to carnivores, and pollinators (Miller, 1993;
Muir et al., 2002). Arthropods are also an important
part of the diet of most neotropical migratory birds
that breed in Pacific Northwest forests. Many shrubs
are also key resources for humans, providing food,
medicinal and floral products, and recreational oppor-
tunities (Carroll et al., 2003; Blatner and Alexander,
1998). Although these ecological and social benefits
are widely recognized, little is known about distri-
bution and abundance patterns of shrubs across the
landscape.

In this paper, we report on our efforts to develop
quantitative models for total and deciduous shrub
cover in the Oregon coastal province and to evaluate
these patterns in the context of ecological theory and
the environmental and social dynamics of the regional
ecosystem. We used ground plot data, coupled with
mapped data on climate, topography and forest struc-
ture, to develop quantitative models using multiple
linear regression (MLR) and regression tree analysis.
Classification and regression trees are a powerful,
relatively new statistical technique ideally suited for
analysis of complex ecological data (De’Ath and
Fabricius, 2000). Although typically viewed as ex-
ploratory, trees have been used in ecological modeling
and predictive mapping (Franklin, 1995, 1998; Aaron
and Meentemeyer, 2001; Thuiller et al., 2003). Our
models are part of a larger interdisciplinary effort
to provide a framework for analyzing the ecological
consequences of different forest policies and strate-
gies across multiple ownerships in the Oregon Coast
Range (Spies et al., 2002a, 2002b). We selected total
and deciduous shrub cover because these variables
are key indicators for wildlife habitat and results from
our analysis are being applied to habitat suitability
models for black-throated gray warblers in the Ore-
gon Coast Range. Studies have found black-throated
gray warblers to be associated with shrub cover, par-
ticularly deciduous cover, and it is thought that shrub
cover is the vegetative cue to which populations re-
spond (Morrison, 1982; Chambers, 1996; Hagar et al.,
1996; Guzy and Lowther, 1997). For black-throated
gray warblers, habitat suitability peaks when decid-
uous shrub cover ranges from 65 to 85% (Michael
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McGrath, USDA Forest Service Pacific Northwest
Research Station, unpublished data).

Studies of forest understory composition and
cover are frequently conducted at small scales, or
within a limited or controlled range of environmental
and disturbance characteristics (e.g.Alaback, 1982;
Halpern, 1989; Bailey et al., 1998; McKenzie and
Halpern, 1999; McKenzie et al., 2000). We present
a landscape-scale study and explore a wide range of
explanatory variables including: overstory stand struc-
ture, natural and anthropomorphic disturbance history
(e.g. land management, ownership, timber harvest
history), and environment (topography, climate, ge-
ography and geology). Numerous studies have shown
the importance of environmental variables such as
temperature and moisture (Zobel et al., 1976; Spies,
1991; Franklin and Spies, 1991; Ohmann and Spies,
1998), topography (Pabst and Spies, 1998; Wimberly
and Spies, 2001), and soil chemistry (Whittaker,
1960) in structuring forest communities. However, in
forested environments it is frequently assumed that
overstory stand structure strongly influences under-
story species cover by altering microsites, resources,
and environmental conditions (Halls and Schuster,
1965; Ford and Newbould, 1977; Alaback, 1982;
Oliver and Larson, 1996; Stone and Wolfe, 1996).

Our objectives are to identify and quantify multi-
ple ecological and anthropomorphic factors associated
with shrub cover in coastal Oregon forests and de-
velop descriptive and predictive models. Specifically,
we address the following questions: (1) Is shrub cover
more tightly linked to environmental, forest structure,
or natural and anthropomorphic disturbance factors?
(2) Are different variables important for explaining
shrub cover across different landowners and can these
differences be interpreted in relation to forest policy?

2. Methods

2.1. Study area

Our study area was the approximately 2.5 million
ha multi-ownership Oregon coastal province (Fig. 1).
The terrain consists of the rugged Oregon Coast
Range, with sharp ridges and steep slopes that are
dissected by major river drainages with undulating
hills and flat valley bottoms. Elevations range from

sea level, to 450–750 m at main ridge summits, with a
high of 1249 m. The mild maritime climate is strongly
influenced by cyclonic storms that approach from the
Pacific Ocean on dominant westerlies. Annual precip-
itation ranges from 150 to 350 cm, with most mois-
ture falling as rain between 1 October and 31 March.
The coastal mountains block winter storms from the
interior valleys, creating a gradient of decreasing pre-
cipitation and increasing temperature from west to
east. In summer, storm tracks shift to the north, and
summers are relatively cool and dry, but a narrow fog
belt along the coast can contribute to precipitation.
A general latitudinal decrease in precipitation and in-
crease in temperature occurs from the north to south.

Two major vegetation zones dominate the study
area, Picea sitchensis, and Tsuga heterophylla,
but small areas ofAbies amabilis are also present
(Franklin and Dyrness, 1988). TheP. sitchensis zone
only exists within several kilometers of the coast, in a
zone of frequent summer fog.Pseudotsuga menziesii
is an extremely important species for commercial
timber production and dominates the study area and
the more extensiveT. heterophylla zone. Throughout
the study area, major hardwoods are deciduous and
frequently limited to recently disturbed and riparian
areas (Franklin and Dyrness, 1988). See Franklin
and Dyrness (1988)and Ohmann and Spies (1998)
for more detailed descriptions of vegetation and
environment.

Fire is a critical disturbance process in the study
area.Impara (1997)found that a mixture of high- and
low-severity fires with an estimated natural fire rota-
tion interval of 271 years distinguished fire episodes
in the central Coast Range. Historical fires in the
drier and warmer eastern and southern portions of the
study area were smaller and more frequent (Impara,
1997). Large, high severity fires characteristic of the
settlement period (1846–1909) have initiated or in-
fluenced much of the forest lands in Oregon coastal
province (Impara, 1997; Wimberly and Spies, 2001).
Other natural disturbance caused by geomorphic
instability, windstorms, and pathogens are also im-
portant in this landscape. Today, timber management
and fire suppression have largely replaced natural
disturbance regimes. Timber management in west-
ern Oregon was historically focused on even-aged
management, which consists of clear-cut logging, in-
tensive site-preparation, and tree re-planting (Hansen
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Fig. 1. Study area showing plot locations and land ownership. Boundaries on state map are counties.

et al., 1991). Therefore, both fire and human distur-
bance processes have created a landscape dominated
by relatively young, even-aged, dense stands ofP.
menziesii. However, forest management practices
vary among landowners, creating marked differences
in disturbance history and stand age (Table 1). USDA
Forest Service National Forests retain landscape pat-
terns created by decades of staggering small harvest
units in space. Lands managed by the USDI Bu-
reau of Land Management (USDI-BLM) occur in

a “checkerboard” pattern interspersed with private
lands, and contain a mix of old and young forest
(Table 1 and Fig. 1). Most remaining old growth
in the Pacific Northwest is concentrated on federal
lands (Bolsinger and Waddell, 1993). Forest indus-
try lands typically occur in large blocks that are still
intensively managed for timber production. Virtu-
ally all private forest lands have been harvested at
least once and most stands are less than 80 years
old.
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Table 1
Stand characterization and disturbance history by landowner (old-growth study plots are not included in age calculations)

Landowner n Stand age in years
(Mean± S.E., range)

Landowner characterization, management, and disturbance history

USDA Forest Service
(USDA-FS)

312 80.9 (3.3)
0–718

Past management of small (40 acre) clear-cut harvest units; currently managed
under the Northwest Forest Plan, with a combination of land allocations
managed primarily to protect and enhance habitat for late-successional and
old-growth forest related species

USDI Bureau of Land
Management
(USDI-BLM)

111 71.3 (5.3)
0–341

Lands interspersed with private lands (“checkerboard” pattern, seeFig. 1);
located predominantly on the east side of the Coast Range; management
history similar to USDA Forest Service

Private forest industry 272 33.8 (1.5)
0–256

Virtually all land has been harvested at least once. Generally intensively
managed for timber production with regulation under the Forest Practice Act;
rotation lengths 40–70 years; 120 acres maximum clear-cuts.

Other 203 40.0 (1.6)
0–122

Miscellaneous private, farm, state, country, municipal and tribal lands with
variable management and disturbance histories reflecting individual landowner
goals; generally less intensively managed than forest industry lands

2.2. Data sources and variables

The data used in this study included measures of
forest tree and shrub composition and structure, dis-
turbance history recorded on field plots, and mapped
environmental variables (Table 2). All variables listed
in Table 2 are in GIS and are spatially complete
and can be applied across the landscape. The dataset
spans a range of stand ages, land ownerships, land
management regimes, disturbance histories, and en-
vironmental gradients across Oregon coastal forests
(Fig. 1). Vegetation and other ground-based data were
obtained and summarized from field plots established
by regional forest inventories and research studies
described inTable 3. Approximate field plot locations
are shown inFig. 1. Only forested plots with complete
understory vegetation data were included (n = 936).
We obtained map layers for climatic, topographic, and
geologic variables (Table 2) that are available in dig-
ital format and that have been shown to be associated
with patterns of forest vegetation in Oregon (Ohmann
and Spies, 1998; Ohmann and Gregory, 2002). Cli-
mate data were derived from mean annual and mean
monthly precipitation and temperature surfaces gen-
erated by the Precipitation–Elevation Regressions on
Independent Slopes Model (PRISM) (Daly et al.,
1994). PRISM uses DEMs to account for topographic
effects in interpolating weather measurements from
an irregular network of weather stations to a uni-
form grid. Detailed descriptions of the creation of
other variables are provided inOhmann and Gregory
(2002).

Shrub cover was calculated by adding ocularly es-
timated percent cover values recorded (recorded to
the nearest percent, not as a cover class) on small
fixed-radius plots (Table 3) for either all shrub species
or all deciduous shrub species. A species was cate-
gorized as a shrub if it is a perennial woody plant
less than 3 m in height when mature (although some
shrubs can occasionally attain tree height) (USDA
Forest Service, 1995; USDA and USDI, 2000). A
list of deciduous shrubs was developed form the
National Plants Database (USDA and USDI, 2000).
Seventy-nine species of shrubs were recorded on the
plots, but most of these species (50.4%) occurred on
less than 1% of the plots (Table 4). Only 14 species,
or 17.8% of the total species found, occurred on 10%
or more of the plots in the study area. Because the
cover of any two species may overlap, this shrub
cover value can exceed 100% (e.g. range for total
shrub cover: 1.2–208).

2.3. Data analysis

We reduced a large number of possible predictor
variables available to us to the final list of 36 inTable 2
by examining correlation coefficients. For variables
that were highly correlated with each other (r > 0.8),
we selected the variable that was more general. For
example, we selected the basal area of all hardwood
trees rather than the basal area of individual hardwood
species. The only exception to this general approach
was inclusion ofT. heterophylla based on results from
previous work (Rogers, 1980; Alaback, 1982; Alaback
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Table 2
Explanatory variables used for data analysis and model development

Variable class and code Description

Land ownership
OWN Four land ownerships based on plot data: USDA-FS, USDI-BLM, private forest industry, other

Overstory tree variables (all trees >2.5 cm diameter at breast height or dbh)
SDI Stand density index= (basal area of all trees× TPH of all trees)0.5

QMDHAL Quadratic mean diameter (QMD) of all hardwoods (cm)
QMDALL QMD of all trees (cm)
TPHVS Trees per hectare (TPH) of very small trees (2.5–12.7 cm dbh)
TPHSM TPH of small trees (2.5–25.4 cm dbh)
TPHMD TPH of medium trees (25.5–50.4 cm dbh)
TPHSMD Sum of TPHSM and TPHMD
TPHLG TPH of large trees (50.5–75.4 cm dbh)
TPHVL TPH of very large trees (75.5–100.4 cm dbh)
TPH TOL TPH of all shade-tolerant treesa

TSHE Basal area ofTsuga heterophylla (m2/ha)
BAHALL Basal area of all hardwoods (m2/ha)
BAALL Basal area of all trees (m2/ha)
BA100 Basal area of trees >100 cm dbh (m2/ha)

Mapped topographic variables
ELEVATION Elevation (m), from 30 m digital elevation model (DEM)
ASPECT Cosine transformation of aspect (degrees) (Beers et al., 1966), 0.0 (southwest)
SLOPE Slope (%), from 30 m DEM
SLOPOS Slope positions(%), 0= bottom of drainage, 100= ridge top, from 30 m DEM
RIPARIAN Indicates whether plot is within 100 m of stream, from GIS overlay
SOLAR Solar radiation (cal/cm2), from program SolarImg (Harmon and Marks, 1995) and 100 m DEM

Mapped climatic variables (from approximately 4.7 km resolution PRISM grids)
ANNPRE Mean annual precipitation (natural logarithm, mm)
CONTPRE Percentage of mean annual precipitation falling in June–August, a measure of seasonality
ANNTMP Mean annual temperature (◦C)
AUGMAXT Mean August maximum temperature, hottest month (◦C)

Disturbance variables
AGE Stand age (years) from plot data, mean total age of dominant and co-dominant trees
HARVEST Three timber harvest classes recorded on plot: clear-cut, partial cut, never cut
DISTURBANCE Years since major disturbance (assigned from 1996, usually clear-cutting) computed from GIS overlay

Geology and geography
ECOREG Ecoregion: coastal, interior, foothill and valley, computed from GIS overlay
GEOLOGY Indicators of lithology and age, generalized fromWalker and MacLeod (1991)
VOLC Volcanic and intrusive rocks
MAFO Mafic rocks (basalt, basaltic andesite, andesite, gabbro), Miocene and older
SEDR Siltstones, sandstones, mudstones, conglomerates (sedimentary)
TUFO Tuffaceous rocks and tuffs, pumicites, silicic flows; Miocene and older
DEPO Depositional (dune sand, alluvial, glacial, glaciofluvial, loess, etc.)
MIXR Mixed rocks (unspecified)

a Shade-tolerant species are:Abies amabilis, Abies grandis, Abies concolor, Chamaecyparis lawsoniana, Picea sitchensis, Thuja plicata,
Taxus brevifolia, Tsuga heterophylla, Acer macrophyllum, Cornus nuttallii, Lithocarpus densiflorus, Rhamnus purshiana, Umbellularia
californica (USDA Forest Service, 1990; Minore, 1979).
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Table 3
Sources of vegetation data and sampling designs

Ownership Source of data Data collection methods

USDA-FS USDI-BLM Current vegetation
survey (CVS)
Forest inventory
and analysis (FIA)

Plots established on a 2.7 km systematic grid (FS wilderness area plots
and BLM plots use a 5.5 km grid). Tree data were summarized from a
series of fixed-radius subplots (0.004–1 ha); cover by shrub species was
recorded on five 170 m2 fixed-radius subplots

All non-federal
(state, private, etc.)

FIA Plots established on a 5.5 km systematic grid. Tree data were
summarized from variable-radius plots; cover by shrub species (>3%)
was recorded on five 826 m2 fixed-radius subplots

USDA-FS USDI-BLM Spies (1991) Plots were selected in late-successional stands ranging from 4 to 20 ha.
Tree data were collected on a 0.1 and 0.05 ha fixed-radius plot; cover of
short shrubs were recorded by species on a 20 m2 subplot and tall
shrubs on a 500 m2 subplot

and Herman, 1988; Stewart, 1988; Franklin and Spies,
1991).

The issue of the best approach for vegetative mod-
eling has been the subject of much discussion in the
literature and many new types of statistical approaches
are gaining popularity (Franklin, 1995; Guisan and
Zimmerman, 2000; Thuiller et al., 2003). We used
two types of models: (1) Gaussian GLM model with
an identity link (equivalent to ordinary least-squares
multiple linear regression or MLR (Guisan and
Zimmerman, 2000)); and (2) regression trees (Breiman
et al., 1984). We used MLR because our dependent
variable was continuous (not binomial or ordinal),
theoretically unbounded, and our error terms were ap-
proximately normal after transformation (total and de-

Table 4
Common shrub species found in the study area

Latin name Common name Frequency

Vaccinium parvifolium Red huckleberry 70.1
Acer circinatum Vine maple 65.5
Gaultheria shallon∗ Salal 64.3
Rubus spectabilis Salmonberry 60.0
Berberis nervosa∗ Dull Oregon grape 53.4
Rubus ursinus Trailing blackberry 52.9
Holodiscus discolor Oceanspray 38.9
Rubus parviflorus Thimbleberry 38.7
Vaccinium ovatum∗ Evergreen huckleberry 29.5
Sambucus racemosa Red elderberry 27.3
Rosa gymnocarpa Baldhip rose 25.0
Corylus cornuta Beaked hazelnut 22.4
Rhododendron

macrophyllum∗
Pacific rhododendron 15.7

Menziesia ferruginea False azalea 11.0

Non-deciduous species are marked with an asterisk.

ciduous shrub cover− natural log and natural log+1)
(Franklin, 1995; Guisan and Zimmerman, 2000).

Because current methods for variable selection in
MLR analysis exhibit considerable bias, we initially
used a modified bootstrap method (1000 bootstrap
replicates with subsample size= N/2) to select
predictors from our set of 26 independent variables
(Olden and Jackson, 2000). However, this criterion re-
sulted in the inclusion of too many variables, as many
coefficients were statistically significantly different
from zero (P < 0.01). Therefore, we used a conserva-
tive forward stepwise procedure (0.01 alpha-to-enter
and 0.05 alpha-to-remove). Final models were se-
lected when the increase inr2 with additional vari-
ables flattened. Outliers were removed if studentized
residuals exceeded 3 (the largest number of outliers
removed was 3). We also developed different MLR
models for each landowner (Table 1) to assess whether
or not variables that were important for explaining
shrub cover varied across land ownership.

Rather than splitting our data into training and
test sets, we used a cross-validation procedure called
error optimism to calculate an improved estimate
of prediction error (Efron and Tibshirani, 1993) for
the MLR models. This procedure uses 100 bootstrap
replicates to generate a separate error that is then
added to the mean residual square error (the appar-
ent error calculated from the model-building dataset).
The resultant value reflects the increase in residual
square error expected if the model was extrapolated
to other data. While our sample size of 936 seems
large, given the extent of our study area and the envi-
ronmental variability between sites, withholding data
would result in too large of a loss of information for



90 B.K. Kerns, J.L. Ohmann / Ecological Indicators 4 (2004) 83–98

model calibration, resulting in greater uncertainty in
parameter estimates and less stability in the validation
estimate of the prediction error (Olden and Jackson,
2000). Data splitting would also be especially imprac-
tical for the different landowner models. The boot-
strap procedure we used aids in reducing problems
associated with obtaining representative samples for
model validation and provides for greater sample size
for model construction (Olden and Jackson, 2000).

Classification and regression trees are a very dif-
ferent approach to prediction developed byBreiman
et al. (1984)that have gained recent popularity for
vegetation modeling (Franklin, 1995; Aaron and
Meentemeyer, 2001; Thuiller et al., 2003). Part of this
popularity stems from the fact that it is not necessary
to deal with the issue of the form of the relationship
between response and explanatory variables (De’Ath
and Fabricius, 2000). Classification and regression
trees are constructed by binary recursive partition-
ing of data into homogenous subunits (sums of
squares) defined by prediction variables (Breiman
et al., 1984). The result is a binary decision tree that
permits the classification of new cases. Classification
trees are used for binary and categorical dependent
variables and regression trees are used for contin-
uous dependent variables. To avoid confusion, we
will refer to our regression tree models simply as
trees.

To develop our trees, we used the same prediction
variables as those used for the MLR models, except
total and deciduous shrub cover were not transformed
(De’Ath and Fabricius, 2000) and additional cate-
gorical variables were included (OWN, HARVEST,
ECOREG, GEOLOGY;Table 2). We developed full
trees using default settings in S-PLUS 2000 (stopping
criteria = 0.01, minimum node size= 10, mini-
mum split = 5) and pruned the models back using
a cost-complexity parameter (Breiman et al., 1984).
Ten-fold cross-validation was applied to determine
optimum tree size with the smallest deviance and to
assess model stability (Clark and Pregibon, 1993).
We used cross-validation, rather than splitting our
data into training and test sets because of issues con-
cerning loss of information as discussed above. Using
all available data may be even more important in
these instances because tree models are so strongly
data driven. Because the size of a selected tree will
vary under repeated cross-validations, this proce-

dure was repeated 10 times (De’Ath and Fabricius,
2000). We did not develop different models for each
landowner because we hypothesized that landowner
would emerge as an explanatory variable.

2.4. Model comparison

MLR and tree models were compared based on
proportional reduction in deviance (PRD): (SSTO−
SSE)/SSTO, where SSTO is the sums of squares to-
tal and SSE the sums of squares error. Use of PRD as
a metric for comparison is appropriate because nor-
mal error function is assumed in both types of mod-
els (Franklin, 1998). For comparative purposes, we
pruned our tree models to contain as many variables
as the MLR models to assess how additional variables
in the tree models change the proportional reduction
in deviance. We also transformed the response vari-
ables to assess the effect of variable transformation on
tree model performance.

3. Results

3.1. MLR models

For the entire Oregon coastal province, three predic-
tor variables were selected for total shrub cover: basal
area ofT. heterophylla (TSHE); density of medium
sized trees (TPHMD); and density of very large trees
(TPHVL) (Table 5). MLR models developed for the
different landowners show different predictor vari-
ables were selected for each, although the negative
relationship between shrub cover and the basal area of
T. heterophylla was always selected first in the step-
wise procedures and explained more variability than
any other variable. A positive relationship between
total shrub cover and either density of very large
trees or stand age was also present in all of the mod-
els. A positive relationship between shrub cover and
very small trees was detected for USDI-BLM lands.
Quadratic mean diameter of all hardwoods (QMD-
HAL) appeared as a predictor variable for USDI-BLM
and other lands, although the sign of this relationship
was not consistent between these landowners. Except
for USDI-BLM lands, MLR models for individual
landowners had better predictive power than the entire
landscape model. None of the MLR models for total
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Table 5
Multiple regression models for total and deciduous shrub cover in the Oregon coastal province

Intercept Coefficients r2 MRSEa IEPEb

ln(total shrub cover)
Coastal province (n = 934) 3.94282 −0.03451 (TSHE) −0.00094 (TPHMD) 0.00837 (TPHVL) 0.23 0.49 0.98

USDA-FS lands (n = 318) 4.24142 −0.05173 (TSHE) −0.00156 (TPHSMD) 0.00676 (TPHVL) 0.49 0.38 0.77
USDI-BLM lands (n = 139)c 3.17480 −0.02700 (TSHE) 0.00050 (TPHVS) 0.01190 (TPHVL) 0.01120 (QMDHAL) 0.14 0.50 0.99
Private industrial (n = 272) 3.73415 −0.03251 (TSHE) 0.00574 (AGE) 0.25 0.41 0.82
Other (n = 201) 3.81515 −0.03443 (TSHE) 0.00948 (AGE) −0.012889 (QMDHAL) 0.30 0.28 0.57

ln(deciduous shrub cover+ 1)
Coastal province (n = 936) 3.35577 −0.02409 (TSHE) 0.017346 (QMDHAL) −0.00853 (BAALL) 0.17 0.77 1.50

USDA-FS lands (n = 320) −8.60771 −0.03568 (TSHE) −0.00273 (TPHMD) 0.01983 (QMDHAL) 1.52709 (ANNPRE) 0.35 0.71 1.36
USDI-BLM lands (n = 139) 4.08035 −0.00548 (SDI) −0.01902 (Slope) 0.18 0.81 1.62
Private industrial (n = 273) 5.44584 −0.03089 (TSHE) 0.01367 (QMDALL) −0.00711 (Solar) 0.17 0.60 1.20
Other (n = 201) 3.5448 −0.02399 (TSHE) −0.00161 (TPHMD) 0.00871 (AGE) 0.23 0.39 0.77

Sample sizes (n) reflect model-building datasets after removal of outliers.
a Mean residual squared error, the apparent error estimate calculated using the model-building dataset.
b Improved estimate of prediction error, based on error optimism, a bias correction factor calculated from 100 bootstraps replicates.
c Alpha-to-enter and alpha-to-remove for stepwise procedure was 0.15.
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shrub cover contained environmental or topographic
mapped variables as predictors.

The MLR models for deciduous shrub cover
showed similar trends in predictor variables as the
total shrub cover models. In contrast to total shrub
cover MLR models, several mapped environmental
and topographic variables appear in deciduous shrub
models for the different landowners, including annual
precipitation (ANNPRE), slope (SLOPE) and solar
radiation (SOLAR). For the entire Oregon coastal
province, three predictor variables were selected:
basal area ofT. heterophylla; quadratic mean diam-
eter of all hardwoods; and basal area of all trees
(BAALL) ( Table 5). Basal area ofT. heterophylla
was again the most important predictor variable for
all of the models, except for USDI-BLM lands. A
positive relationship was detected between quadratic
mean diameter of all hardwoods and deciduous shrub
cover, as well as quadratic mean diameter of all trees,
stand age, and annual precipitation. Models for the

Fig. 2. Tree models for total and deciduous shrub cover. Numbers in bold refer to mean additive shrub cover, with sample size below.
Node numbers are for reference to discussions in the text only.

different landowners had better predictive power than
the overall model, except for private industrial lands.

3.2. Tree models

For the total shrub cover tree model, 10 sets of
10-fold cross-validation showed that deviance was
minimized at 3–10 nodes (mean= 5.9, median= 6;
most frequent node size= 6 and 7) and the final tree
was pruned to six nodes (Fig. 2). The tree shows pri-
mary partitions using five predictor variables: basal
area ofT. heterophylla, quadratic mean diameter of
all trees (QMDALL); density of very small trees;
density of shade-tolerant trees (TPHTOL); and ele-
vation (ELEVATION). Shrub cover is the lowest in
stands with basal area ofT. heterophylla greater than
8.3 m2/ha (node 1) and highest in stands with less
basal area ofT. heterophylla, larger trees, and low
densities of shade-tolerant trees (node 4). Elevation is
important for stands with littleT. heterophylla, larger
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Table 6
Comparison of MLR and tree models of total and deciduous shrub cover for the Oregon Coast Range

Response variable Model
type

Number of
variables

Variables selected Reduction in
deviance (PRD) %

ln(total shrub cover) MLR 3 TSHE, TPHMD, TPHVL 23
Total shrub cover Tree 5 TSHE, QMDALL, TPHVS, TPHTOL, ELEVATION 21
Total shrub cover Tree 3 TSHE, QMDALL, TPHVS 17
ln(total shrub cover) Tree 3 TSHE, BAALL, TPHMD 27
ln(deciduous shrub cover+ 1) MLR 3 TSHE, QMDHAL, BAALL 17
Deciduous shrub cover Tree 5 SDI, QMDHAL, TSHE, AUGMAX, SLOPE 22
Deciduous shrub cover Tree 3 SDI, BAHALL, TSHE 18
ln(deciduous shrub cover+ 1) Tree 3 SDI, BAHALL, QMDALL 18

trees, and higher densities of shade-tolerant trees
(nodes 5 and 6).

For the deciduous shrub cover tree model, 10 sets
of 10-fold cross-validation revealed that deviance was
minimized at 4–10 nodes (mean= 6, median= 6.2;
4, 6, and 8 nodes were most frequent) and the final
tree was pruned to 6 nodes (Fig. 2). The tree shows
primary partitions using five predictor variables: stand
density index (SDI), quadratic mean diameter of
all hardwoods, mean August maximum temperature
(AUGMAX), basal area ofT. heterophylla; and slope.
Deciduous shrub cover was highest in plots with a
stand density index less than 142.2, quadratic mean
diameter of all hardwoods greater than 3.05 cm and
mean August maximum temperatures less than 22.8◦C
(node 2). Very low deciduous cover is noted for plots
with a stand density index greater than 142.2, and basal
area ofT. heterophylla greater than 8.3 m2/ha (node 6).
Interestingly, 8.3 m2/ha basal area forT. heterophylla
appears as an important threshold in both tree models.

3.3. Model evaluation and comparison

MLR models of total and deciduous shrub cover for
the entire province contained three variables and PRD
values were 23% and 17%, respectively (Table 6).
Tree models of total and deciduous shrub cover con-
tained five predictor variables (selected by repeated
cross-validation) and PRD values were 21 and 22%,
respectively (Fig. 2). The MLR model performed
slightly better for predicting total shrub cover but for
deciduous cover the tree model performed much bet-
ter (Table 6). Constraining tree models to three vari-
ables reduced PRD by 4% for each model; however,
MLR stepwise procedures indicated that performance

was only negligibly increased with the inclusion of
two additional predictor variables. Response variable
transformation resulted in a substantial increase in
performance (10%) for the constrained total shrub
cover tree model. For both total and deciduous cover,
transformations resulted in the selection of slightly
different explanatory variables. However, the basal
area ofT. heterophylla was still the most important
predictor for total shrub cover and stand density index
was still the most important predictor of deciduous
cover.

4. Discussion

Results from all of our models suggest that forest
structure and stand development, site disturbance his-
tory, and environment all interact to influence shrub
cover in the Oregon coastal landscape. Overstory
forest structure variables emerged as the most im-
portant for explaining both total and deciduous shrub
cover. Environmental variables were more important
for explaining deciduous shrub cover, but they also
indirectly explain patterns in total shrub cover by
influencing tree composition (e.g. basal area ofT.
heterophylla and hardwoods). Our results are con-
sistent with others who note that regional gradients
in species composition are associated primarily with
climate, whereas patterns of forest structure vary with
disturbance but are not predictable based on physical
landscape characteristics (Bormann and Likens, 1979;
Ohmann and Spies, 1998; Wimberly and Spies, 2001;
Ohmann and Gregory, 2002).

Four major relationships in our results can be sum-
marized as follows: (1) shrub cover was negatively
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associated withT. heterophylla basal area and den-
sity of shade-tolerant trees; (2) shrub cover was nega-
tively associated with variables that characteristically
peak during stem exclusion (sensuOliver, 1981) and
mid-succession (small and medium tree density, stand
density index); (3) shrub cover was positively associ-
ated with variables that characterize later successional
stages (very large tree density, quadratic mean diam-
eter of all trees, stand age); and (4) higher total and
especially deciduous shrub cover was positively asso-
ciated with hardwood stands. These relationships pro-
vide managers with a framework for understanding
how management and forest development can poten-
tially impact shrub cover and the ecosystem compo-
nents that rely on shrubs. We discuss each of these
relationships in turn below.

The processes underlying the first three patterns
noted above can be described by successional dynam-
ics and competitive dominance of taller vegetation
layers (Oliver, 1981; Alaback, 1982; Halpern, 1989;
Bormann and Likens, 1979; Tappeiner and Alaback,
1989). Low understory cover is characteristic of stem
exclusion and mid-succession, when resources such
as light and nutrients are limited. In older stands,
tree basal area and densities decline, canopy gaps
start to form, resources become more heterogeneous
and locally abundant, and more favorable environ-
mental conditions develop for understory species
(Alaback, 1982; Spies, 1991; Halpern and Spies,
1995; McKenzie et al., 2000; Carey et al., 1999;
Thomas et al., 1999). Understory cover may also in-
crease in older stands because of temporal factors as-
sociated with dispersal and growth (McKenzie et al.,
2000). With our data it is not possible to separate the
effects of forest structure from other time-dependent
factors such as dispersal.

The basal area ofT. heterophylla was a very im-
portant variable that appeared in many of the models.
T. heterophylla and other shade-tolerant trees are typ-
ically co-dominant withP. menziesii andP. sitchensis
(in the coastal fog zone) or present in the understory.
The proportion ofT. heterophylla andP. menziesii in
the overstory or subcanopy influence conditions in
the understory environment in stands several ways.T.
heterophylla canopies have high foliar biomass, pro-
ducing dense, high leaf area canopies that intercept
more light and precipitation and have a sparser un-
derstory compared toP. menziesii canopies (Alaback,

1982; Stewart, 1986; Alaback and Herman, 1988;
Deal, 2001). This pattern has been observed forTsuga
forests elsewhere (Rogers, 1980). Successful regen-
eration ofT. heterophylla seedlings and saplings can
also dramatically decrease shrub production (Alaback,
1982; Alaback and Herman, 1988; Stewart, 1988).

The positive association of shrubs, specifically de-
ciduous shrubs, with hardwoods is most likely due
to light conditions on the forest floor in these stands.
More light penetrates deciduous tree canopies in
the early spring when many shrubs begin growing,
and more light probably penetrates these canopies
throughout the growing season compared to conif-
erous tree canopies (Pabst and Spies, 1998). This
increased light availability may be particularly impor-
tant for deciduous shrubs because they are not able to
photosynthesize throughout the growing season. Other
factors, such as nutrient and moisture conditions, may
also play an important role. Hardwood stands are
frequently dominated byAlnus rubra, and nitrogen
accretion in soils associated withAlnus stands can be
significant (Tarrant and Trappe, 1971; Binkley, 1981).
Because hardwood stands are frequently limited to
recently disturbed areas, the positive association of
shrubs with these stands may also represent an early
successional stage.

Conceptually, we expected that very high total and
deciduous shrub cover would be strongly associated
with very early serial stages (e.g. prior to stem ex-
clusion) and that this would be a dominant pattern
in the models. For example, in the Oregon Coast
Range, vegetative growth and replacement ofRubus
spectabilis typically allows this species to maintain
a dense canopy that can substantially inhibit regen-
eration of trees and taller shrubs (Tappeiner et al.,
1991; Stein, 1995; Knowe et al., 1997). Once persis-
tent cover ofR. spectabilis is established, succession
to other tree or shrub communities could be unlikely
without major disturbance or management interven-
tion. Yet, we did not find strong evidence for this type
of pattern at the landscape scale. Interestingly, when
we examined plots characterized as “open” (definition
based onOhmann and Gregory, 2002: <1.5 m2/ha to-
tal tree basal area and quadratic mean diameter of all
dominant trees less than 50) mean shrub cover was be-
low average (n = 55; total shrub mean cover= 37.5,
S.E. = 3.4; deciduous= 21.3, S.E. = 2.9). Rela-
tively low shrub cover in these areas is most likely
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due to forest management practices associated with
land ownership. The majority (78%) of these open
plots are on non-federally owned private industrial or
other lands, where management emphasizes produc-
tion of commercially valuable conifers and herbicides
may be used to control competing vegetation afterP.
menziesii is densely re-planted. In the Oregon Coast
Range, shrub and hardwood tree cover declined from
1939 to 1993 (R. Hess, USDA Forest Service, Pa-
cific Northwest Research Station, 2003, unpublished
data). Historical declines in shrub cover may be due
to intensive timber management on private industrial
lands, coupled with conservation priorities focused on
providing late-successional habitat on federal lands.

As discussed earlier, environmental variables were
more important for explaining deciduous shrub cover,
emerging in the model directly and indirectly by
affecting tree compositional distribution and abun-
dance. The variables that directly emerged reflect
both regional gradients (annual precipitation, mean
August maximum temperatures) and local microsite
conditions (slope, solar radiation). For example, the
only variable important for total shrub cover was el-
evation (tree model), and the pattern illustrated may
reflect dense thickets of shrubs frequently found on
ridge tops, where soils are thin and trees are prone
to windthrow (Alaback, 1982). Slope, solar radia-
tion, annual precipitation and mean August maximum
temperatures were important variables for explaining
deciduous shrub cover. Lower shrub cover on slightly
steeper slopes (greater than 22.3%, tree model) could
reflect the pattern observed byPabst and Spies (1998),
where deciduous shrubs such asRubus sp. andAcer
circinatum were associated with valley bottoms and
lower hillslopes in riparian forests. The negative asso-
ciation between solar radiation and deciduous shrubs
on private industrial lands could reflect the observa-
tion that evergreen shrub cover tends to be higher on
warm and dry sites (Zobel et al., 1976; Franklin and
Spies, 1991). Annual precipitation was important for
USDA Forest Service (USDA-FS) lands, and reflects
a regional west–east and north–south decreasing gra-
dient in precipitation, indicating that deciduous shrubs
are more abundant in wetter, western and northern
locales compared to drier eastern and southern areas.

However, because of the non-random geographic
distribution of landowners across the province
(e.g. USDA-FS lands are located in the west and

USDI-BLM lands in the east), it is difficult to decou-
ple environmental factors from disturbance factors
associated with each landowner. This may explain
why ownership did not emerge as an important pre-
dictor in our tree models as hypothesized. In the study
region, overstory forest structure and composition are
not independent of land ownership and their associ-
ated management and disturbance histories. That is,
ownership, and management and disturbance history
are embedded in our other variables. The non-random
geographic distribution of federal and non-federal
landowners across western Oregon’s major envi-
ronmental gradients has been reported elsewhere
(Ohmann and Spies, 1998).

All of our models displayed fairly weak predictive
power, and bootstrap validations indicate that predic-
tion errors would double if models were extrapolated
to other data. Therefore, we caution against using
these models for extrapolation outside conditions
represented by our data. Lack of strong empirical re-
lationships may reflect the facts that many shrubs can
persist and maintain consistent cover under a variety
of forest stand and environmental conditions (Halpern
and Spies, 1995). In addition, understory response
may lag behind overstory treatments or disturbances.
For example, if a stand was thinned, overstory mea-
surements would reflect the event instantaneously,
while understory measurements would not (McKenzie
et al., 2000). Moreover, grouping all shrub species as
a functional group may be problematic and responses
to our independent variables could be quite different
for individual species. Future research efforts could
focus on examination of individual shrub species, life
histories and growth patterns.

The stochastic nature of site conditions, history,
and disturbance also makes prediction at this large
scale in this highly managed variable landscape inher-
ently problematic. The most powerful MLR models
were derived for USDA-FS lands, which are probably
more homogeneous in terms of site conditions and
disturbance history compared to the other landown-
ers. Indeed, most of the MLR models developed for
individual landowners for both total and deciduous
shrub cover had better predictive power than models
developed at the landscape scale and showed differ-
ent variables were important; yet, we were somewhat
surprised by how similar the models were in terms of
interpretation.
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MLR and tree models were somewhat similar in
terms of interpretation yet performance varied. Over-
all, trees models performed similarly or better except
when constrained to contain as many predictor vari-
ables as MLR models. Yet, the opposite was not true.
That is, inclusion of additional variables in the MLR
models did not significantly increase model perfor-
mance. Additional variables in tree models have a dif-
ferent and more profound effect on model performance
compared to the effect of additional variables in MLR
models. When we transformed total and deciduous
shrub cover, tree model performance improved sub-
stantially for total shrub cover but not for deciduous
cover. This suggests that variance issues were more
serious for total shrub cover compared to deciduous
shrub cover. Because it is not necessary to deal with
the issue of the form of the relationship between re-
sponse and explanatory variables, response variables
for tree model development are not commonly trans-
formed. Yet,De’Ath and Fabricius (2000)note that
non-constant variation will give greater weight to data
with higher variation and response variable transfor-
mation may be desirable. Our results indicate such
transformations can greatly improve regression tree
model performance.

We found that using a variety of modeling methods
provided important insights into complex relation-
ships among variables and improved our understand-
ing of factors that influence shrub cover. For example,
MLR models repeatedly showed the importance of
T. heterophylla in explaining total and deciduous
shrub cover, consistent with prior findings concern-
ing the significance ofTsuga in controlling forest
understory conditions in other regions (Rogers, 1980;
Alaback, 1982; Alaback and Herman, 1988; Stewart,
1988; Franklin and Spies, 1991). But the tree models
allowed a more explicit understanding of this rela-
tionship by providing a threshold. Such identified
thresholds may be similarly useful to forest managers
and to understand ecological linkages. Strategies to
increase total shrub cover for wildlife or other pur-
poses might include reducing the basal area ofT.
heterophylla in stands (<8 m2/ha) and promoting
stands with large trees (QMD> 36). For deciduous
shrubs, low stand density index (<142) and retention
and promotion of hardwood patches with large trees
(QMD > 3) is important. However, we caution that
application of tree models to make spatial predic-

tions of vegetation or habitat will result in maps with
discontinuous boundaries that are the result of the
discrete dependent variable (nodes).

We demonstrated the utility of using widely avail-
able and extensive forest inventory and research data
to identify, quantify, and analyze ecological and an-
thropomorphic factors associated with shrub cover
in coastal Oregon forests. Shrubs are an important
ecological and forest health indicator because they
contribute to many ecosystem components. However,
defining critical levels of shrub cover for these vari-
ous attributes is complex and will vary by attribute.
Generally, low shrub cover in Pacific Northwest
forests indicates a lack of structural and compositional
complexity and potentially unhealthy ecosystem con-
ditions. Inclusion of shrub cover in assessments of
ecosystem health is important because: (1) shrub cover
can be used to indicate habitat quality for wildlife;
(2) shrubs play a critical role in ecosystem function;
and (3) shrub cover is responsive to disturbance and
management practices. Our models predict how shrub
cover will change with forest structural development
in response to natural disturbance or forest manage-
ment. Forest managers can use our models to analyze
landscape level consequences of forest management
practices and the effects of potential shifts in climate
on shrub cover.
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