Vegetation Biodiversity in Coastal Oregon Forests

Janet L. Ohmann and Thomas A. Spies, USDA Forest Service Matthew J. Gregory and K. Norm Johnson, OSU

- A new kind of vegetation map
- Uses in CLAMS
- Current vegetation biodiversity

Funding by PNW: CLAMS, Northwest Forest Plan, Wood Compatibility Initiative, Forest Inventory and Analysis

A Novel Way to Map Vegetation

A 'tree list' for each pixel

IDNO	TREE #	SPECIES	DВНСМ	нтм	cc	BHAGE	TPHPLT
41034020	101	TSHE	39.116	24.384	4	83	2.617
41034020	116	CHLA	109.728	32.309	3	136	2.617
41034020	123	TSHE	55.880	39.319	3	103	2.617
41034020	129	PSME	200.152	58.826	3	913	1.000
41034020	133	PSME	66.802	40.843	3	99	2.617
41034020	316	TSHE	57.404	40.234	3	80	2.617
41034020	319	CHLA	105.664	45.110	3	244	2.617
41034020	320	CHLA	80 518	42 062	4	349	2 617

Statistical model

Data from plots (FIA, CVS, BLM, OG)

Spatial data in GIS

Vegetation maps (1996)

CLAMS vegetation map ...somewhere SW of Eugene, 1996

How good is the CLAMS vegetation map?

- Assessed accuracy using a variety of methods
- Excellent representation of regional patterns and variability, landscape proportions
- Reasonable representation of fine-scale pattern, inexact for specific sites, similar to other satellite-based maps.
- Rare species and habitats not well represented
- For more information:
 - Posters
 - Ohmann, J.L.; Gregory, M.J. 2002. Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastal Oregon, USA. Canadian Journal of Forest Research 32:725-741.

Uses of Vegetation Map in CLAMS

- Initial conditions (1996) for landscape simulations
- Response models for wildlife, aquatic, timber
- 'Big picture' vegetation conditions
- Current vegetation biodiversity

CLAMS conceptual model

445 Plant Species on 1,500 forest plots

Trees:
46 species
(10%)

Shrubs: 81 species (18%)

Herbs: 318 species (72%)

Tree Species and Forest Types: Linked to Environment

Sitka Spruce Forest

- 331,357 ha (818,783 ac)
- 15% of forest area

Western Hemlock Forest

- 1.5 mill. ha (1.6 mill. ac)
- 65% of forest area

Pacific Silver Fir / Noble Fir Forest

- 28,594 ha (70,656 ac)
- 1% of forest area

Dry Western Hemlock / Mixed Evergreen Forest

- 308,482 ha (762,210 ac)
- 14% of forest area

Foothill Oak Woodlands

- 125,379 ha (309,812 ac)
- 6% of forest area

Forest Types and Management Objectives

- About 1/3 of each forest type managed for ecological goals
 EXCEPT...
- Foothill oak woodlands: 94% on private lands, few reserves, threatened by nonforest development.

Old forests, closed canopies, public lands Young forests, open canopies, private lands

Forest Age and Structure

 Associated with management history, land ownership

Young ← Old

Very Young, Open Forest

(0-25 cm, <70% cover)

- 29% of landscape
- Mostly (80%) on private lands
- 24% is managed for ecological goals
- Virtually all is managed forest, lacking legacy trees

Young to Middle-Aged Forest

(25-50 cm, >70% cover)

- Predominant condition (52% of landscape)
- Mostly (66%) on private lands
- 37% is managed for ecological goals

Mature Forests

(>50 cm, but lacking old growth characteristics)

- Small part (17%) of landscape
- Mostly (70%) on public lands
- 72% is managed for ecological goals

Old-Growth Forests *

- 2% of all forest, below historic range of variability
- Mostly (78%) on public lands, especially BLM
- 79% managed for ecological goals

* Old-Growth Habitat Index \geq 75. Based on stand age, tree size diversity, large tree density, snag density, down wood volume.

Legacy Trees

Natural legacies after wildfire

Lack of legacies under intensive management

Forest management w/ legacies

No. trees/ha >100 cm dbh 0 - 1.71.7 - 3.43.4 - 5.25.2 - 6.96.9 - 8.6

Large Live Trees

- Most abundant in older forest, federal lands
- Important habitat in young forests, legacy from previous forest

Snags

- Strongly affected by forest management
- Most abundant in older forests, public lands
- Diminished in young managed forest

Down Wood

- Associated with site productivity, long-term history
- More evenly distributed across ages and ownerships (greater longevity)
- Tillamook Burn legacy

Broadleaf Trees

- Coastal, riparian, foothill, disturbed habitats
- Reduced by intensive forest management favoring conifers
- Most abundant on nonindustrial private lands

Key Findings: Vegetation Biodiversity in Coastal Oregon

- In semi-natural forested landscapes, all ownerships contribute to biodiversity.
- Some biodiversity elements (tree species, forest types) are relatively insensitive to forest management practices: conservation must consider regional environmental gradients.
- Forest types represented in reserves EXCEPT foothill oak woodlands.
- Older forests: small part of current landscape and below HRV, but being addressed by current policies.
 - Diverse young forests: also rare but receiving less attention. Legacy tree habitat: uncertain future.

What's so novel about the CLAMS vegetation map? (i.e., advantages for ecological analysis, simulation modeling, integrated assessment)

- Spatially complete, regional in scope, AND rich in detail (tree species and structures)
- Each pixel contains a tree list, from which many continuous vegetation variables can be derived. User-defined classification systems can be applied to meet a variety of objectives.
- At regional level, full range of variability is represented.
 At site level, covariance of species and structures is maintained.
- Use of mapped environmental data results in models that better capture ecological relationships.